Summary

用于鉴定黑色素瘤转移新介质的强大发现平台

Published: March 08, 2022
doi:

Summary

本文介绍了用于测试黑色素瘤转移的新型候选介质及其作用机制的技术工作流程。

Abstract

转移是一个复杂的过程,需要细胞克服仅通过 体外 测定不完全建模的障碍。使用稳健,可重复 的体内 模型和标准化方法建立了系统工作流程,以识别黑色素瘤转移的新参与者。这种方法允许在特定实验阶段进行数据推断,以精确表征基因在转移中的作用。通过将转基因黑色素瘤细胞通过心内,皮内或皮下注射引入小鼠,然后用连续 体内 成像进行监测来建立模型。一旦达到预先确定的终点,就会收获和处理原发性肿瘤和/或携带转移瘤的器官以进行各种分析。肿瘤细胞可以进行分类并经受几种“组学”平台中的任何一种,包括单细胞RNA测序。器官接受影像学和免疫组织病理学分析,以量化转移的总体负担并绘制其特定的解剖位置。这种优化的管道,包括用于移植,监测,组织收获,处理和分析的标准化方案,可以用于患者来源的短期培养物以及各种固体癌症类型的已建立的人和小鼠细胞系。

Introduction

与转移性黑色素瘤相关的高死亡率加上全球黑色素瘤发病率的增加1 (预计到2025年将增加7.86%),需要新的治疗方法。靶标发现的进步取决于可重复的转移模型,这是一个高度复杂的过程。在转移级联反应的整个步骤中,黑色素瘤细胞必须克服无数障碍才能实现免疫系统的规避和远处组织的定植2。黑色素瘤细胞的弹性和适应性来自多种因素,包括它们的高基因突变负担3 和它们的神经嵴起源,这赋予了关键的表型可塑性345。在每个步骤中,转录程序允许转移性黑色素瘤细胞根据与微环境的串扰的线索从一种状态切换到另一种状态,包括免疫系统6,细胞外环境78和它们接触的物理屏障9 的细胞结构。例如,黑色素瘤细胞通过下调重要的免疫启动肿瘤分泌因子6的表达来逃避免疫监视。

研究描述了一种“前转移生态位”,其中黑色素瘤细胞分泌趋化因子和细胞因子来启动远处的“靶”器官进行转移10。这些发现提出了关于转移性黑色素瘤细胞的器官趋向性以及它们进入远处组织的解剖途径的重要问题。已知在静脉内渗后,黑色素瘤细胞通过淋巴管(淋巴扩散)和血管(血源性扩散)转移211。虽然大多数患者表现为局限性疾病,但一小部分病例表现为远处转移性疾病且无淋巴播散(阴性淋巴结受累)11,提示存在黑色素瘤的替代转移途径。

当它们定植于转移部位时,黑色素瘤细胞经历表观遗传和代谢适应1213。为了进入和侵入新的隔室,黑色素瘤细胞使用蛋白酶14 和细胞骨架修饰1115,使它们能够穿越并在新位置生长。靶向黑色素瘤细胞的困难在于这种适应的复杂性和数量;因此,该领域应该努力在实验中重建尽可能多的步骤和适应。尽管 体外 测定(如类器官和3D培养物)取得了许多进展1617,但这些模型仅不完全概括 体内 转移级联反应。

小鼠模型通过在可重复性,技术可行性和人类疾病模拟之间取得平衡而显示出价值。血管内,原位和异位植入黑色素瘤细胞从患者来源的异种移植物或短期培养物到免疫受损或人源化小鼠中代表了转移性黑色素瘤靶标发现的骨干。然而,这些系统通常缺乏对转移的关键生物学约束:免疫系统。具有这种约束的同源黑色素瘤转移模型在该领域相对稀缺。这些系统,在免疫功能小鼠中开发,包括B16-F1018、YUMM家族细胞系19、SM120、D4M321、RIM322 或更近、RMS23 和M1(Mel114433)、M3(HCmel1274)、M4(B2905)24 黑色素瘤细胞系,有助于研究宿主免疫应答在黑色素瘤进展中的复杂作用。

这里,提出了黑色素瘤转移靶标鉴定的管道。随着黑色素瘤患者队列中生成的“组学”数据集越来越多,我们假设具有最大临床前景的研究是那些源于大数据集成的研究,从而导致细致的功能和机制询问25262728。通过使用小鼠模型来研究转移过程中的潜在靶标,可以解释 体内特异性事件和组织相互作用,从而增加临床转化的可能性。概述了多种量化转移负荷的方法,提供了任何给定实验结果的补充数据。描述了从各种器官中的肿瘤中分离单细胞的方案,以帮助转移细胞中基因表达的无偏倚表征,这可能先于单细胞或本体RNA测序。

Protocol

注:以下协议中涉及的动物程序已获得纽约大学机构动物护理和使用委员会(IACUC)的批准。所有程序均在实验室动物护理国际评估和认证协会(AAALAC)批准的设施中进行。 图1 描述了一般的实验方法。 1. 患者来源的黑色素瘤短期培养 (STCs) 将组织置于60mm培养皿中,其中1mL完全RPMI(RPMI 1640补充10%胎牛血清(FBS),2mM L-谷氨酰胺,1…

Representative Results

下图说明了所描述的工作流程如何应用于鉴定黑色素瘤转移的新驱动因素。 图2 总结了一项已发表的研究的结果,其中研究了沉默岩藻糖基转移酶FUT8 在体内 黑色素瘤转移中的作用26。简而言之,对人类患者血糖数据(通过凝集素阵列获得)和转录组学分析的分析显示,与从原发性到转移性黑色素瘤进展相关的α-1,6-岩藻糖水平升高,与相应岩藻糖?…

Discussion

本技术报告的目的是为黑色素瘤转移中潜在参与者的调查提供标准化的自上而下的工作流程。由于 体内 实验可能既昂贵又耗时,因此最大限度地提高效率和增加所获信息价值的策略至关重要。

必须始终使用互补方法在同一实验中交叉验证结果。例如,NuMA免疫组化染色和BLI都是定量转移负荷的补充方法,因为两者都不是全面的。虽然BLI是一种在 体内跟踪肿瘤进?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢纽约大学朗格尼健康高级研究技术部(DART),特别是实验病理学研究实验室,基因组技术中心,细胞术和细胞分选实验室,临床前成像核心,这些实验室部分由Perlmutter癌症中心支持赠款NIH / NCI 5P30CA016087。我们感谢纽约大学跨学科黑色素瘤合作小组(PI:Iman Osman博士)提供患者来源的黑色素瘤短期培养+ (10-230BM和12-273BM)的途径,这些培养物是通过IRB批准的方案获得的(通用同意研究#s16-00122和跨学科黑色素瘤合作小组研究#10362)。我们感谢Robert Kerbel博士(多伦多大学)提供113 / 6-4L和131 / 4-5B1黑色素瘤细胞系*,以及Meenhard Herlyn博士(Wistar研究所)提供WM 4265-2,WM 4257s-1,WM 4257-2黑色素瘤短期培养**。E.H.由NIH / NCI R01CA243446,P01CA206980,美国癌症协会 – 黑色素瘤研究联盟团队科学奖和NIH黑色素瘤孢子(NCI P50 CA225450;PI:I.O.)。 图 1 是使用 Biorender.com 创建的。

Materials

#15 Scapel Blade  WPI 500242 For surgical procedures
#3 Scapel Handle WPI 500236 For surgical procedures
1 mL Tuberculin syringe, slip tip  BD 309626 Injections
10 mL syringe, slip tip  BD 301029 Perfusion
10% Formalin Sodium Buffered EK Industries 4499-20L For perfusion/tissue fixative
15 mL Conical Corning  430052 Cell culture
15 mL Conical Polypropylene Centrifuge Tubes Falcon 352196 Cell culture
200 Proof Ethanol Deacon Labs 04-355-223 Histology
22G – 22mm needle BD 305156 Perfusion
4-0 Vicryl Suture Ethicon J464G Suture
4% Carson's phosphate buffered paraformaldehyde  EMS 15733-10 For perfusion/tissue fixative
40µm Corning 431750 Tissue processing
5-0 Absorbable Suture  Ethicon 6542000 Closure
50 mL Conical  Corning  430828 Cell culture
50mL Conical Polypropylene Centrifuge Tubes Falcon 352070 Cell culture
7-0 Silk suture  FST 18020-70 Ligature
70µm Corning 431751 Tissue processing
Anti-fade mounting media   Vector Labs H-1000-10 Immunofluorescence
Approximator applying Forceps, 10cm  WPI 14189 For microsurgical procedures
Avance Bruker 3 HD NMR Console 
Biospec 7030  Bruker 7030 Micro MRI
BSA Bioreg A941 NuMA Staining
Castroviejo suturing forceps, straight tips 5.5mm tying platform, 11cm  WPI WP5025501 For microsurgical procedures
Coplin Staining Jar Bel-Art  F44208-1000 Histology
DAPI Sigma-Aldrich D9542-1MG Immunofluorescence
dCas9-KRAB Addgene 110820 Genetic manipulation
DNase I NEB M0303L Tissue processing
DPBS Corning 21-030-CM Tissue processing
Extra Sharp Uncoated Single Edge Blade GEM 62-0167 Tissue processing
Extracellular Matrix Substrate  Corning 354234 Consider the Growth Factor Reduced ( as alternative 
FBS Cytiva SH30910.03 Cell culture
Fiji Image J Fiji Image J Software Immunofluorescence
Goat anti-rabbit HRP conjugated multimer  Thermo Fisher A16104 NuMA Staining
Goat Serum Gibco PCN5000 Immunofluorescence
HBSS Corning 21-020-CV Tissue processing
Hematoxylin  Richard-Allan Scientific  7231 Histology
Illumina III  PerkinElmer CLS136334 BLI Instrument
Insulin syringe 28G – 8mm needle BD 329424 Injections
Insulin syringe 31G – 6mm needle  BD 326730 Injections
Iris Forceps, 10.2cm, Full Curve, serrated WPI 504478 For perfusion and surgical procedures
Isoflurane USP Covetrus 11695067772 Anesthesia
Jewelers #7 Forceps Titanium 11 cm 0.07 x 0.01 mm Tip WPI WP6570 For microsurgical procedures
Ketamine HCl 100mg/mL Mylan Ind. 1049007 Anesthesia
lentiCRISPRv2 Addgene 98290 Genetic manipulation
Lycopersicon Esculentum (Tomato) Lectin, DyLight 649 Invitrogen L32472 Vascular endothelial cells marker
MEM non-essential amino acids X 100 Corning 25-025-CI Cell culture
Metzenbaum Scissors WPI 503269 For surgical procedures
Microinjection Unit KOPF 5000 Intracardiac injections
NaCl Fisher S25877  NuMA Staining
Needle 30G x 25mm BD 305128 Intracardiac Injection
Needle 33G x 15mm Hamilton 7747-01 Intracarotid Injection
Needle holder, Castroviejo, 14cm, with lock, 1.2mm Serrated Jaws WPI 14137-G For microsurgical procedures
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice The Jackson Laboratory 005557 Murine model
NU/J mice The Jackson Laboratory 002019 Murine model
Nuclear Mitotic Apparatus Protein polyclonal rabbit anti-human  Abcam 97585 NuMA Staining
Penicillin-Streptomycin 10000U/mL Gibco 15140122 Cell culture
Percoll GE 0891-01 density separation solution 
PI Classic Surgical Gloves Cardinal Health 2D72PT75X Surgery
pLKO Tet-On Addgene 21915 Genetic manipulation
Povidone-Iodine 10% Solution Medline MDS093943 Surgery
Proparacaine Drops 0.5% Akorn Pharma AX0501 Opthalmic local anesthetic
Puralube Petrolatum Opthalmic Ointment Dechra 83592 Anesthesia
Razor Blade Double Edge Blades  EMS 72000 Shaving and Vibrotome Brain Slicing 
Reflex 9mm EZ Clip  Braintree EZC- KIT Wound closure
RPMI 1640  Corning 10-040-CM Cell culture
Scissors, Spring 10.5cm Str, 8mm Blades WPI 501235 For microsurgical procedures
Semi-Automatic Vibrating Blade Microtome Leica VT1200 Brain Slice Immunofluorescence
Single Channel Anesthesia Vaporizer System Kent Scientific VetFlo-1210S  Anesthesia
Smartbox Tabletop Chamber System and Exhaust Blower EZ Systems TT4000 CO2 Euthanasia
Sterile Fenestrated Disposable Drape Medline NON21002 Surgery
Sterile Non-Reinforced Aurora Surgical Gowns with Set-In Sleeves Medline DYNJP2715 Surgery
T25 Flask Corning  430639 Cell culture
Tris Corning 46-031-CM NuMA Staining
Triton X-100 Sigma-Aldrich X100-500ML Immunofluorescence
Troutman tying forceps, 10cm, Curved G pattern, 0.52mm tip with tying platform WPI WP505210 For microsurgical procedures
Vessel clips 10G Pressure 5x 0.8mm Jaws, 5/pkg WPI 15911 For microsurgical procedures
Visiopharm Visiopharm Visiopharm NuMA Staining Quantification Software
Xylasine 100mg/mL Akorn Pharma 59399-111-50 Anesthesia
Xylene Fisher X3P-1GAL Histology

References

  1. Sung, H., et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 71 (3), 209-249 (2021).
  2. Adler, N. R., Haydon, A., McLean, C. A., Kelly, J. W., Mar, V. J. Metastatic pathways in patients with cutaneous melanoma. Pigment Cell Melanoma Research. 30 (1), 13-27 (2017).
  3. Platz, A., Egyhazi, S., Ringborg, U., Hansson, J. Human cutaneous melanoma; a review of NRAS and BRAF mutation frequencies in relation to histogenetic subclass and body site. Molecular Oncology. 1 (4), 395-405 (2008).
  4. Alonso, S. R., et al. A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. Cancer Research. 67 (7), 3450-3460 (2007).
  5. Rowe, C. J., Khosrotehrani, K. Clinical and biological determinants of melanoma progression: Should all be considered for clinical management. Australasian Journal of Dermatology. 57 (3), 175-181 (2016).
  6. Plebanek, M. P., et al. Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic niche. Nature Communications. 8 (1), 1319 (2017).
  7. Orgaz, J. L., et al. Loss of pigment epithelium-derived factor enables migration, invasion and metastatic spread of human melanoma. Oncogene. 28 (47), 4147-4161 (2009).
  8. Ladhani, O., Sanchez-Martinez, C., Orgaz, J. L., Jimenez, B., Volpert, O. V. Pigment epithelium-derived factor blocks tumor extravasation by suppressing amoeboid morphology and mesenchymal proteolysis. Neoplasia. 13 (7), 633-642 (2011).
  9. Ju, R. J., Stehbens, S. J., Haass, N. K. The role of melanoma cell-stroma interaction in cell motility, invasion, and metastasis. Frontiers in Medicine – Dermatology. 5, 307 (2018).
  10. Wiley, H. E., Gonzalez, E. B., Maki, W., Wu, M. T., Hwang, S. T. Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. Journal of the National Cancer Institute. 93 (21), 1638-1643 (2001).
  11. Meier, F., et al. Metastatic pathways and time courses in the orderly progression of cutaneous melanoma. British Journal of Dermatology. 147 (1), 62-70 (2002).
  12. Turner, N., Ware, O., Bosenberg, M. Genetics of metastasis: melanoma and other cancers. Clinical & Experimental Metastasis. 35 (5-6), 379-391 (2018).
  13. Ubellacker, J. M., et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature. 585 (7823), 113-118 (2020).
  14. Cukierman, E., Pankov, R., Stevens, D. R., Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science. 294 (5547), 1708-1712 (2001).
  15. Cunningham, C. C., et al. Actin-binding protein requirement for cortical stability and efficient locomotion. Science. 255 (5042), 325-327 (1992).
  16. Unger, C., et al. Modeling human carcinomas: physiologically relevant 3D models to improve anti-cancer drug development. Advanced Drug Delivery Reviews. 79-80, 50-67 (2014).
  17. Fong, E. L., Harrington, D. A., Farach-Carson, M. C., Yu, H. Heralding a new paradigm in 3D tumor modeling. Biomaterials. 108, 197-213 (2016).
  18. Nakamura, K., et al. Characterization of mouse melanoma cell lines by their mortal malignancy using an experimental metastatic model. Life Science. 70 (7), 791-798 (2002).
  19. Meeth, K., Wang, J. X., Micevic, G., Damsky, W., Bosenberg, M. W. The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations. Pigment Cell Melanoma Research. 29 (5), 590-597 (2016).
  20. Koya, R. C., et al. BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy. Cancer Research. 72 (16), 3928-3937 (2012).
  21. Jenkins, M. H. Multiple murine BRaf(V600E) melanoma cell lines with sensitivity to PLX4032. Pigment Cell Melanoma Research. 27 (3), 495-501 (2014).
  22. Tuncer, E., et al. SMAD signaling promotes melanoma metastasis independently of phenotype switching. The Journal of Clinical Investigation. 129 (7), 2702-2716 (2019).
  23. Schwartz, H., et al. Incipient Melanoma Brain Metastases Instigate Astrogliosis and Neuroinflammation. Cancer Research. 76 (15), 4359-4371 (2016).
  24. Perez-Guijarro, E., et al. Multimodel preclinical platform predicts clinical response of melanoma to immunotherapy. Nature Medicine. 26 (5), 781-791 (2020).
  25. Krepler, C., et al. A Comprehensive Patient-Derived Xenograft Collection Representing the Heterogeneity of Melanoma. Cell Reports. 21 (7), 1953-1967 (2017).
  26. Agrawal, P., et al. A systems biology approach identifies FUT8 as a driver of melanoma metastasis. Cell. 31 (6), 804-819 (2017).
  27. Hanniford, D., et al. Epigenetic silencing of CDR1as drives IGF2BP3-mediated melanoma invasion and metastasis. Cancer Cell. 37 (1), 55-70 (2020).
  28. Kim, H., et al. PRMT5 control of cGAS/STING and NLRC5 pathways defines melanoma response to antitumor immunity. Science Translational Medicine. 12 (551), (2020).
  29. de Miera, E. V., Friedman, E. B., Greenwald, H. S., Perle, M. A., Osman, I. Development of five new melanoma low passage cell lines representing the clinical and genetic profile of their tumors of origin. Pigment Cell Melanoma Research. 25 (3), 395-397 (2012).
  30. Morsi, A., et al. Development and characterization of a clinically relevant mouse model of melanoma brain metastasis. Pigment Cell Melanoma Research. 26 (5), 743-745 (2013).
  31. Huynh, C., et al. Efficient in vivo microRNA targeting of liver metastasis. Oncogene. 30 (12), 1481-1488 (2011).
  32. Zou, C., et al. Experimental variables that affect human hepatocyte AAV transduction in liver chimeric mice. Molecular Therapy Methods and Clinical Development. 18, 189-198 (2020).
  33. Kleffman, K., et al. Melanoma-secreted Amyloid Beta Suppresses Neuroinflammation and Promotes Brain Metastasis. bioRxiv. , 854885 (2019).
  34. Curtis, A., Calabro, K., Galarneau, J. R., Bigio, I. J., Krucker, T. Temporal variations of skin pigmentation in C57BL/6 mice affect optical bioluminescence quantitation. Molecular Imaging and Biology. 13 (6), 1114-1123 (2011).
  35. Sil, P., Wong, S. W., Martinez, J. More than skin deep: autophagy is vital for skin barrier function. Frontiers in Immunology. 9, 1376 (2018).
  36. Chen, S., et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell. 160 (6), 1246-1260 (2015).
  37. Hart, T., et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell. 163 (6), 1515-1526 (2015).
  38. Wang, T., et al. Identification and characterization of essential genes in the human genome. Science. 350 (6264), 1096-1101 (2015).
  39. Edgar, R., Domrachev, M., Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research. 30 (1), 207-210 (2002).
  40. Lappalainen, I., et al. The European Genome-phenome Archive of human data consented for biomedical research. Nature Genetics. 47 (7), 692-695 (2015).
  41. Cerami, E., et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discovery. 2 (5), 401-404 (2012).
  42. Grossman, R. L., et al. Toward a shared vision for cancer genomic data. New England Journal of Medicine. 375 (12), 1109-1112 (2016).
check_url/63186?article_type=t

Play Video

Cite This Article
Shadaloey, A. A. S., Karz, A., Moubarak, R. S., Agrawal, P., Levinson, G., Kleffman, K., Aristizabal, O., Osman, I., Wadghiri, Y. Z., Hernando, E. A Robust Discovery Platform for the Identification of Novel Mediators of Melanoma Metastasis. J. Vis. Exp. (181), e63186, doi:10.3791/63186 (2022).

View Video