Summary

Engineering and Characterization of an Optogenetic Model of the Human Neuromuscular Junction

Published: April 14, 2022
doi:

Summary

We describe a reproducible, automated, and unbiased imaging system for characterizing neuromuscular junction function using human engineered skeletal muscle tissue and optogenetic motoneurons. This system allows for the functional quantification of neuromuscular connectivity over time and detects diminished neuromuscular function caused by neurotoxins and myasthenia gravis patient serum.

Abstract

Many neuromuscular diseases, such as myasthenia gravis (MG), are associated with dysfunction of the neuromuscular junction (NMJ), which is difficult to characterize in animal models due to physiological differences between animals and humans. Tissue engineering offers opportunities to provide in vitro models of functional human NMJs that can be used to diagnose and investigate NMJ pathologies and test potential therapeutics. By incorporating optogenetic proteins into induced pluripotent stem cells (iPSCs), we generated neurons that can be stimulated with specific wavelengths of light. If the NMJ is healthy and functional, a neurochemical signal from the motoneuron results in muscle contraction. Through the integration of optogenetics and microfabrication with tissue engineering, we established an unbiased and automated methodology for characterizing NMJ function using video analysis. A standardized protocol was developed for NMJ formation, optical stimulation with simultaneous video recording, and video analysis of tissue contractility. Stimulation of optogenetic motoneurons by light to induce skeletal muscle contractions recapitulates human NMJ physiology and allows for repeated functional measurements of NMJ over time and in response to various inputs. We demonstrate this platform's ability to show functional improvements in neuromuscular connectivity over time and characterize the damaging effects of patient MG antibodies or neurotoxins on NMJ function.

Introduction

The neuromuscular junction (NMJ) is the chemical synapse between motoneurons (MNs) and skeletal muscle cells (SkM) that allows for muscle contraction. Toxins, such as neurotoxin α-bungarotoxin (BTX), or neuromuscular diseases (NMD) like myasthenia gravis (MG) can lead to degeneration of the NMJ and reductions in muscle control1. Bioengineered human tissue models better recapitulate the functional and physiological mechanisms of human NMJs and offer greater translational potential than animal models.

While animal models have advanced the understanding of the formation and function of the NMJ, there are significant differences between human and animal synapses that limit the translation of results to humans and make in vivo characterization of the NMJ challenging2,3,4. Studies have shown distinct physiological differences between mouse and human NMJs. Mice have larger NMJs and smaller active zone densities when compared to human NMJs4. Additionally, drug studies conducted in animal models do not always reflect the effects found in human clinical trials. Engineered human tissue models provide the opportunity to study the healthy development of the NMJ and the pathology of neuromuscular diseases and allow for drug screenings. Human induced pluripotent stem cells (hiPSCs)5 can be differentiated into a variety of cell types, including skeletal muscle cells6,7 and motoneurons8,9. hiPSCs can be generated easily from patient cells, allowing for better disease modeling10 and drug screening11,12 through patient-specific tissue models.

Two-dimensional (2D) monolayer co-cultures of SkMs and MNs lack the morphology, phenotype, organization, and functional behavior of physiological NMJs. NMJs randomly form in 2D culture, which inhibits the isolation of motor units for analysis, limits accurate functional measurements, and prevents their use for repeated, systematic experiments13. Three-dimensional (3D) tissue models of NMJs overcome many of these limitations, recapitulating the morphological and functional characteristics of physiological NMJs7,14,15,16,17. Using this model, the two tissue types are developed separately and then integrated by directing axonal growth, allowing for more organized NMJs to develop compared to 2D culture systems.

Our previous study demonstrated that combining optogenetics with tissue engineering can allow for accurate non-invasive stimulation and evaluation of NMJ function18,19. Through genetic engineering, light-sensitive proteins can be integrated into the genome of hiPSCs. Integrating channelrhodopsin-2 (ChR2), an ion channel that opens in response to blue light, into the membrane of excitable cells such as neurons allows for non-contact spatiotemporal control over cell activation20,21,22. hiPSCs carrying ChR2 can be differentiated into optogenetic motoneurons sensitive to blue light, removing the need for typical invasive electrodes that stimulate neurons and avoiding unwanted stimulation of the muscle cells by electrodes23. This system uses optogenetic motoneurons to stimulate contractions in non-optogenetic skeletal muscle cells. Combining video acquisition and controlled blue light illumination allows for the co-cultured tissues to be simultaneously stimulated and recorded for NMJ function.

MG is caused by autoantibodies targeting nicotinic acetylcholine receptors (AChR), which results in decreased NMJ function and muscle weakness24. It is diagnosed based on presented symptoms, electrodiagnosis, and detection of autoantibodies via serological blood tests. However, not all autoantibodies involved in MG have been identified, and some seronegative patients are diagnosed with MG but with no recognized antibodies25,26. Our system allows for repeated functional assessment of the NMJ before and after the addition of serum from MG patients, providing invaluable insight into the functional and biochemical changes caused by the MG antibodies18. Our protocol illustrates how to produce 3D in vitro models of functional human NMJ that can be used to diagnose and investigate NMJ pathologies and test potential therapeutics. We demonstrate the versatility of the system in two platforms, a microfluidic device, and a larger open-well bioreactor platform.

Protocol

All cell lines for this work were created and used in compliance with the institutional guidelines of Columbia University, NY, USA. 1. Bioreactor preparation Make bioreactor molds Download a bioreactor CAD file from the Supplementary CAD File or create a custom own design. Generate a CNC toolpath from the 3D model using CAM software. Machine acetal molds using a CNC milling machine. Fabricat…

Representative Results

Neuromuscular junctions were generated by co-culturing optogenetic hiPSC-derived motoneurons with non-optogenetic skeletal muscle tissue. Human primary skeletal myoblasts (SkM) were seeded into the platforms and differentiated into multinucleated myotubes using the 2-week protocol. The optogenetic motoneurons were differentiated separately, but in parallel with the myotube differentiation, and then seeded into the platform (Figure 1). The tissues began contracting in response to blue light s…

Discussion

This system is an engineered 3D human tissue model that combines optogenetics and video processing to enable automated and unbiased evaluation of NMJ function. Using a standardized protocol, we have demonstrated the ability to measure changes in NMJ function during physiological development and characterize the damaging effects of pathologies such as neurotoxin exposure and myasthenia gravis patient sera.

Previous studies have reported the ability to model MG with optogenetic hPSC-derived moto…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We gratefully acknowledge funding support by the NIH [grant numbers EB025765 and EB027062], DOD [award number W81XWH-18-1-0095], and the UCSF Health Innovation via Engineering (HIVE Fellowship). We gratefully acknowledge the Columbia University Stem Cell Core for their help and guidance with cell reprogramming.

Materials

Cells
SkMDC Cook Myosite P01059-14M
Media and Supplements
Advanced DMEM/F12 ThermoFisher Scientific 12634-020
Bovine Serum Albumin solution Millipore Sigma A9576-50ML
G-5 Supplement (100X) ThermoFisher Scientific 17503-012
Geneticin Selective Antibiotic (G418 Sulfate) (50 mg/mL) ThermoFisher Scientific 10131-035
Insulin, Recombinant Human Millipore Sigma 91077C-100MG
Matrigel Corning 354277
mTeSR Plus Stem Cell Technologies 100-0276
MyoTonic Growth Media Kit Cook Myosite MK-4444
N-2 Supplement ThermoFisher Scientific 17502-048
NBactiv4 500 mL BrainBits LLC Nb4-500
Neurobasal Medium ThermoFisher Scientific 21103-049
Neurobasal-A Medium ThermoFisher Scientific A13710-01
Pluronic F-127 Sigma Aldrich P2443
ReLeSR Stem Cell Technologies 5872
Plasticware
30 mm cage cube system ThorLabs CM1-DCH, CP33, ER1-P4 and ER2-P4
37 µm Reversible Strainer, large Stem Cell Technologies 27250
546 nm short-pass excitation filter Semrock FF01-546/SP-25
573 nm dichroic mirror Semrock FF573-Di01–25×36
594 nm long- pass emission filter Semrock BLP01-594R-25
594 nm long-pass excitation filter Semrock BLP01-594R-25
Blue (470nm) Rebel LED on a SinkPAD-II 10mm Square Base – 65 lm @ 700mA LuxeonStarLEDs SP-05-B4
Carclo 29.8° Frosted 10 mm Circular Beam Optic – Integrated Legs LuxeonStarLEDs 10413
Corning 60 mm Ultra-Low Attachment Culture Dish Corning 3261
Heat sink LuxeonStarLEDs LPD-19-10B
Optics
pluriStrainer 400 µm, 25 pack, sterile PluriSelect 43-50400-03
pluriStrainer 500 µm, 25 pack, sterile PluriSelect 43-50500-03
Red (627nm) Rebel LED on a SinkPAD-II 10mm Square Base – 65 lm @ 700mA LuxeonStarLEDs SP-05-R5
ring-actuated iris diaphragm ThorLabs SM1D12D
T-Cube LED drivers ThorLabs LEDD1B, KPS101
Molds
Female Threaded Hex Standoffs,  3 1/2" 10-32, Partially Threaded 1/2" McMaster 91920A046
Low-Profile C-Clamp McMaster 1705A12
Growth Factors
Adenosine 3′,5′-cyclic monophosphate Millipore Sigma A9501-1G
CHIR 99021, 10 mg Tocris 4423/10
DAPT 10 mg R&D Systems 2634/10
Human CNTF, research grade, 5 µg Miltenyl Biotec 130-096-336
Human Vitronectin Protein, CF R&D Systems 2349-VN-100
Human Vitronectin Protein, CF R&D Systems 2349-VN-100
IGF1 Recombinant Human Protein ThermoFisher Scientific PHG0078
Laminin mouse protein, natural ThermoFisher Scientific 23017015
Recombinant Human Agrin Protein R&D Systems 6624-AG-050
Recombinant Human GDNF Protein, CF 50ug R&D Systems 212-GD-050/CF
Recombinant Human Neurotrophin 3 100 ug Cell Sciences CRN500D
Recombinant Human Neurotrophin-4 Cell Sciences CRN501B
Recombinant Human Sonic Hedgehog/Shh (C24II) N-Terminus R&D Systems 1845-SH-100
Recombinant Human/Murine/Rat BDNF 50 ug Peprotech 450-02
Retinoic Acid, 50 mg Millipore Sigma R2625-50
SAG Smoothened Agonist Millipore Sigma 566660
SB431542 10 mg Stem Cell Technologies 72234
StemMACS LDN-193189 Miltenyl Biotec 130-103-925
Vitronectin from human plasma Millipore Sigma V8379-50UG
Y-27632 dihydrochloride Tocris 1254
Antibodies
α-actinin mAb (Mouse IgG1) Abcam ab9465
Choline Acetyltransferase (ChAT) (Goat) Millipore AB144P
Desmin mAb (Mouse IgG1) Dako M076029-2
Myosin Heavy Chain (MHC) (Mouse IgG2b) DSHB MF20
Equipment
Arduino Uno R3 Arduino A000066
Automated stage Applied scientific instrumentation MS- 2000 XYZ
Expanded plasma cleaner Harrick Plasma PDC-001 (115V)
Invitrogen Countess Automated Cell Counter Marshal Scientific I-CACC
IX-81 Inverted fluorescence microscope Olympus IX-ILL100LH
Series Stage Top Incubator System Tokai Hit STX TOKAI-HIT-STXG
Zyla 4.2 sCOMS Camera Andor Technology ZYLA-4.2P-CL10
Software
Arduino Software (IDE) Arduino IDE 1.8.19
Mastercam Mastercam Mastercam for Solidworks
Matlab Matlab R2021b
NIS elements Nikon Basic Research
Solidworks 3D CAD Solidworks Solidworks Standard

References

  1. Al-bassam, W., et al. Characteristics, incidence, and outcome of patients admitted to the intensive care unit with myasthenia gravis. Journal of Critical Care. 45, 90-94 (2018).
  2. Vila, O. F., Qu, Y., Vunjak-Novakovic, G. In vitro models of neuromuscular junctions and their potential for novel drug discovery and development. Expert Opinion on Drug Discovery. 15 (3), 307-317 (2020).
  3. Webster, R. G. Animal models of the neuromuscular junction, vitally informative for understanding function and the molecular mechanisms of congenital myasthenic syndromes. International Journal of Molecular Sciences. 19 (5), 1326 (2018).
  4. Jones, R. A., et al. Cellular and molecular anatomy of the human neuromuscular junction. Cell Reports. 21 (9), 2348-2356 (2017).
  5. Takahashi, K., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131 (5), 861-872 (2007).
  6. Rao, L., Qian, Y., Khodabukus, A., Ribar, T., Bursac, N. Engineering human pluripotent stem cells into a functional skeletal muscle tissue. Nature Communications. 9 (1), 126 (2018).
  7. Madden, L., Juhas, M., Kraus, W. E., Truskey, G. A., Bursac, N. Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. eLife. 4, 04885 (2015).
  8. Maury, Y., et al. Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nature Biotechnology. 33 (1), 89-96 (2015).
  9. Bianchi, F., et al. Rapid and efficient differentiation of functional motor neurons from human iPSC for neural injury modelling. Stem Cell Research. 32, 126-134 (2018).
  10. Turan, S., Farruggio, A. P., Srifa, W., Day, J. W., Calos, M. P. Precise correction of disease mutations in induced pluripotent stem cells derived from patients with limb girdle muscular dystrophy. Molecular Therapy. 24 (4), 685-696 (2016).
  11. Ebert, A. D., Liang, P., Wu, J. C. Induced pluripotent stem cells as a disease modeling and drug screening platform. Journal of Cardiovascular Pharmacology. 60 (4), 408-416 (2012).
  12. Lin, C. -. Y., et al. iPSC-derived functional human neuromuscular junctions model the pathophysiology of neuromuscular diseases. JCI Insight. 4 (18), (2021).
  13. Centeno, E. G. Z., Cimarosti, H., Bithell, A. 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Molecular Neurodegeneration. 13 (1), 27 (2018).
  14. Okano, T., Matsuda, T. Tissue engineered skeletal muscle: preparation of highly dense, highly oriented hybrid muscular tissues. Cell Transplantation. 7 (1), 71-82 (1998).
  15. Powell, C. A., Smiley, B. L., Mills, J., Vandenburgh, H. H. Mechanical stimulation improves tissue-engineered human skeletal muscle. American Journal of Physiology-Cell Physiology. 283 (5), 1557-1565 (2002).
  16. Ronaldson-Bouchard, K., et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature. 556 (7700), 239-243 (2018).
  17. Guo, X., et al. A human-based functional NMJ system for personalized ALS modeling and drug testing. Advanced Therapeutics. 3 (11), 2000133 (2020).
  18. Vila, O. F., et al. Bioengineered optogenetic model of human neuromuscular junction. Biomaterials. 276, 121033 (2021).
  19. Vila, O. F., et al. Quantification of human neuromuscular function through optogenetics. Theranostics. 9 (5), 1232-1246 (2019).
  20. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience. 8 (9), 1263-1268 (2005).
  21. Nagel, G., et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences. 100 (24), 13940-13945 (2003).
  22. Steinbeck, J. A., et al. Functional connectivity under optogenetic control allows modeling of human neuromuscular disease. Cell Stem Cell. 18 (1), 134-143 (2016).
  23. Santhanam, N., et al. Stem cell derived phenotypic human neuromuscular junction model for dose response evaluation of therapeutics. Biomaterials. 166, 64-78 (2018).
  24. Phillips Ii, L. H. The epidemiology of myasthenia gravis. Annals of the New York Academy of Sciences. 998 (1), 407-412 (2003).
  25. Sanders, D. B., et al. Does change in acetylcholine receptor antibody level correlate with clinical change in myasthenia gravis. Muscle & Nerve. 49 (4), 483-486 (2014).
  26. Vernino, S. Unraveling the enigma of seronegative myasthenia gravis. JAMA Neurology. 72 (6), 630-631 (2015).
  27. Osaki, T., Uzel, S. G. M., Kamm, R. D. Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons. Science Advances. , (2018).
  28. Paredes-Redondo, A., et al. Optogenetic modeling of human neuromuscular circuits in Duchenne muscular dystrophy with CRISPR and pharmacological corrections. Science Advances. 7 (37), (2021).
check_url/63759?article_type=t

Play Video

Cite This Article
Liberman, M., Chavez, M., Nash, T. R., Vila, O. F., Vunjak-Novakovic, G. Engineering and Characterization of an Optogenetic Model of the Human Neuromuscular Junction. J. Vis. Exp. (182), e63759, doi:10.3791/63759 (2022).

View Video