Summary

制备与DNA修复因子络合的核小体核心颗粒用于冷冻电镜结构测定

Published: August 17, 2022
doi:

Summary

该协议详细概述了使用两种用于冷冻TEM网格的样品制备方法制备核小体复合物。

Abstract

染色质背景下的DNA修复知之甚少。使用核小体核心颗粒(染色质的基本重复单位)的生化研究表明,与游离DNA相比,大多数DNA修复酶以较低的速率去除DNA损伤。关于碱基切除修复(BER)酶如何识别和去除核小体中DNA损伤的分子细节尚未阐明。然而,核小体底物的生化BER数据表明,核小体根据DNA病变和酶的位置呈现出不同的结构屏障。这表明这些酶用于去除游离DNA中DNA损伤的机制可能与核小体中使用的机制不同。鉴于大多数基因组DNA组装成核小体,需要这些复合物的结构信息。迄今为止,科学界缺乏详细的协议来对这些复合物进行技术上可行的结构研究。在这里,我们提供了两种方法来制备两种基因融合的BER酶(聚合酶β和AP核酸内切酶1)的复合物,结合到核小体入口 – 出口附近的单核苷酸间隙,用于冷冻电子显微镜(cryo-EM)结构测定。两种样品制备方法都兼容通过冷冻 优质网格进行玻璃化处理。该协议可用作制备具有不同BER因子,先驱转录因子和染色质修饰酶的其他核小体复合物的起点。

Introduction

真核DNA由组蛋白组织和压缩,形成染色质。核小体核心颗粒(NCP)构成了染色质的基本重复单元,其调节DNA结合蛋白的可及性,以进行DNA修复,转录和复制1。尽管NCP的第一个X射线晶体结构在二十多年前首次被解决2,并且自3456以来已经发表了更多的NCP结构但核小体底物中的DNA修复机制尚未被描绘出来。揭示染色质中DNA修复的分子细节将需要对参与组分进行结构表征,以了解NCP的局部结构特征如何调节DNA修复活动。这在碱基切除修复(BER)的背景下尤其重要,因为BER酶的生化研究表明核小体中独特的DNA修复机制取决于催化的酶特异性结构要求和核小体内DNA病变的结构位置7,89,10,111213.鉴于BER是一个至关重要的DNA修复过程,人们非常有兴趣填补这些空白,同时也建立一个起点,从中可以进行涉及相关核小体复合物的其他技术上可行的结构研究。

冷冻电镜正迅速成为解决复合物三维 (3D) 结构的首选方法,其大规模制备均质样品具有挑战性。尽管与DNA修复因子(NCP-DRF)复合的NCP的设计和纯化可能需要量身定制的优化,但此处介绍的生成和冷冻稳定的NCP-DRF复合物的程序提供了有关如何优化样品和冷冻电镜网格制备的详细信息。 图 1 中所示的两个工作流(不相互排斥)以及协议中的特定详细信息确定了关键步骤,并提供了优化这些步骤的策略。这项工作将推动染色质和DNA修复领域朝着一个方向发展,即用结构研究补充生化在技术上变得可行,以更好地了解核小体DNA修复的分子机制。

Protocol

1. 通过盐渍透析组装核小体核心颗粒 注意:使用重组组蛋白进行结构研究的核小体核心颗粒的制备已被其他人详细详细描述14,15,16。按照其他人14,15描述的重组X. laevis组蛋白和组蛋白八聚体组装的纯化,并如下所述组装核小体底物。 <…

Representative Results

正确组装的NCP(图2)用于与MBP-Polβ-APE1的重组融合蛋白制备复合物(图3)。为了确定NCP与MBP-Polβ-APE1形成稳定复合物的比例,我们进行了电泳迁移率位移测定(EMSA)(图4),该测定显示NCP的单移带与5倍摩尔过量的MBP-Polβ-APE1。在优化制造这种复合物的过程中,与戊二醛交联对于防止NCP分崩离析至关重要。最初,NCP-Polβ-APE1复合物…

Discussion

纯化DNA修复因子的特定方案将取决于感兴趣的酶。然而,有一些一般性建议,包括使用重组方法进行蛋白表达和纯化18;如果感兴趣的蛋白质太小(<50 kDa),则通过冷冻电镜进行结构测定几乎是不可能的,直到最近通过使用融合系统19,纳米抗体结合支架20和优化成像策略21

在初始阶段获得劣质网格是很?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢美国国家环境健康科学研究所冷冻电镜核心的Mario Borgnia博士和北卡罗来纳大学教堂山分校的Joshua Strauss博士在冷冻电镜网格制备方面的指导和培训。我们还感谢朱莉安娜·梅洛·达丰塞卡·雷赞德博士在该项目初期提供的技术援助。我们感谢已故Samuel H. Wilson博士及其实验室成员,特别是Rajendra Prasad博士和Joonas Jamsen博士对纯化基因融合的APE1-Polβ复合物的重要贡献和支持。该研究得到了美国国立卫生研究院,国家环境健康科学研究所的校内研究计划[批准号Z01ES050158,Z01ES050159和K99ES031662-01]的支持。

Materials

1 M HEPES; pH 7.5 Thermo Fisher Scientific 15630080
1 M MgCl2 Thermo Fisher Scientific AM9530G
10x TBE Bio-rad 1610733
25% glutaraldehyde Fisher Scientific 50-262-23
3 M KCl Thermo Fisher Scientific 043398.K2
491 prep cell Bio-rad 1702926
Amicon Ultra 15 centrifugal filter (MW cutoff 30 kDa) Millipore Sigma Z717185
Amicon Ultra 4 centrifugal filter (MW cutoff 30 kDa) Millipore Sigma UFC8030
AutoGrid Tweezers Ted Pella 47000-600
Automatic Plunge Freezer Leica Leica EM GP
C-1000 touch thermocycler Bio-rad 1851148
C-clips and rings Thermo Fisher 6640–6640
Clipping station SubAngostrom SCT08
Dialysis Membrane (MW cufoff 6-8 kDa) Fisher Scientific 15370752
Diamond Tweezers Techni-Pro 758TW0010
dsDNA Integrated DNA techonologies N/A
FEI Titan Krios Thermo Fisher KRIOSG4TEM
FPLC purification system AKTA Pure 29018224
Fraction collector Model 2110 Bio-rad 7318122
Glow Discharge Cleaning System Ted Pella 91000S
Grid Boxes SubAngostrom PB-E
Grid Storage Accessory Pack SubAngostrom GSAX
Liquid Ethane N/A N/A
Liquid Nitrogen N/A N/A
Minipuls 3 peristaltic two-head pump Gilson F155008
Nanodrop Thermo Fisher Scientific ND-2000
Novex 16%, Tricine, 1.0 mm, Mini Protein Gels Thermo Fisher Scientific EC6695BOX
Pipetman Gilson FA10002M
Pipette tips (VWR) Low Retention VWR 76322-528
Polyacrylamide gel solution (37.5:1) Bio-rad 1610158
polyethylene glycol (PEG) Millipore Sigma P4338-500G
Pur-A-lyzer Maxi 3500 Millipore Sigma PURX35050
Purified recombinant DNA repair factor N/A N/A
R 1.2/1.3 Cu 300 mesh Grids Quantifoil N1-C14nCu30-01
Recombinant histone octamer N/A N/A
Spring clipping tools SubAngostrom CSA-01
Superdex 200 column 10/300 Millipore Sigma GE28-9909-44
Transmission Electron Microscope Thermo Fisher Talos Arctica 200 kV
Tweezers Assembly for FEI Vitrobot Mark IV-I Ted Pella 47000-500
UltraPure Glycerol Thermo Fisher Scientific 15514011
Vitrobot Thermo Fisher Mark IV System
Whatman Filter paper (55 mM) Cytiva 1005-055
Xylene cyanol Thermo Fisher Scientific 440700500
Zeba Micro Spin Desalting Columns, 7K MWCO, 75 µL Thermo Fisher Scientific 89877

References

  1. Ehrenhofer-Murray, A. E. Chromatin dynamics at DNA replication, transcription and repair. European Journal of Biochemistry. 271 (12), 2335-2349 (2004).
  2. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 389 (6648), 251-260 (1997).
  3. Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W., Richmond, T. J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. Journal of Molecular Biology. 319 (5), 1097-1113 (2002).
  4. Suto, R. K., Clarkson, M. J., Tremethick, D. J., Luger, K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nature Structural Biology. 7 (12), 1121-1124 (2000).
  5. Tachiwana, H., et al. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature. 476 (7359), 232-235 (2011).
  6. McGinty, R. K., Tan, S. Nucleosome structure and function. Chemical Reviews. 115 (6), 2255-2273 (2015).
  7. Rodriguez, Y., Hinz, J. M., Laughery, M. F., Wyrick, J. J., Smerdon, M. J. Site-specific acetylation of histone H3 decreases polymerase beta activity on nucleosome core particles in vitro. The Journal of Biological Chemistry. 291 (21), 11434-11445 (2016).
  8. Rodriguez, Y., Hinz, J. M., Smerdon, M. J. Accessing DNA damage in chromatin: Preparing the chromatin landscape for base excision repair. DNA Repair (Amst). 32, 113-119 (2015).
  9. Rodriguez, Y., Horton, J. K., Wilson, S. H. Histone H3 lysine 56 acetylation enhances AP endonuclease 1-mediated repair of AP sites in nucleosome core particles. Biochemistry. 58 (35), 3646-3655 (2019).
  10. Rodriguez, Y., Howard, M. J., Cuneo, M. J., Prasad, R., Wilson, S. H. Unencumbered Pol beta lyase activity in nucleosome core particles. Nucleic Acids Research. 45 (15), 8901-8915 (2017).
  11. Rodriguez, Y., Smerdon, M. J. The structural location of DNA lesions in nucleosome core particles determines accessibility by base excision repair enzymes. The Journal of Biological Chemistry. 288 (19), 13863-13875 (2013).
  12. Olmon, E. D., Delaney, S. Differential ability of five DNA glycosylases to recognize and repair damage on nucleosomal DNA. ACS Chemical Biology. 12 (3), 692-701 (2017).
  13. Odell, I. D., Wallace, S. S., Pederson, D. S. Rules of engagement for base excision repair in chromatin. Journal of Cellular Physiology. 228 (2), 258-266 (2013).
  14. Dyer, P. N., et al. Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods in Enzymology. 375, 23-44 (2004).
  15. Luger, K., Rechsteiner, T. J., Richmond, T. J. Preparation of nucleosome core particle from recombinant histones. Methods in Enzymology. 304, 3-19 (1999).
  16. McGinty, R. K., Makde, R. D., Tan, S. Preparation, crystallization, and structure determination of chromatin enzyme/nucleosome complexes. Methods in Enzymology. 573, 43-65 (2016).
  17. Lopez-Gomollon, S., Nicolas, F. E. Purification of DNA oligos by denaturing polyacrylamide gel electrophoresis (PAGE). Methods in Enzymology. 529, 65-83 (2013).
  18. Burgess, R. R. D., Murray, P. . Guide to Protein Purification. 463, (2009).
  19. Coscia, F., et al. Fusion to a homo-oligomeric scaffold allows cryo-EM analysis of a small protein. Scientific Reports. 6, 30909 (2016).
  20. Wu, X., Rapoport, T. A. Cryo-EM structure determination of small proteins by nanobody-binding scaffolds (Legobodies). Proceedings of the Nationall Academy of Sciences of the United States of America. 118 (41), 2115001118 (2021).
  21. Herzik, M. A., Wu, M., Lander, G. C. High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM. Nature Communications. 10 (1), 1032 (2019).
  22. Takizawa, Y., et al. Cryo-EM structure of the nucleosome containing the ALB1 enhancer DNA sequence. Open Biology. 8 (3), 170255 (2018).
  23. Anderson, C. J., et al. Structural basis for recognition of ubiquitylated nucleosome by Dot1L methyltransferase. Cell Reports. 26 (7), 1681-1690 (2019).
check_url/64061?article_type=t

Play Video

Cite This Article
Rodriguez, Y., Butay, K. J., Sharma, K., Viverette, E., Wilson, S. H. Preparation of Nucleosome Core Particles Complexed with DNA Repair Factors for Cryo-Electron Microscopy Structural Determination. J. Vis. Exp. (186), e64061, doi:10.3791/64061 (2022).

View Video