Summary

患者来源乳腺类器官的建立和培养

Published: February 17, 2023
doi:

Summary

这里提供了一个详细的方案,用于从患者来源的乳腺肿瘤切除术或正常乳腺组织中建立人乳腺类器官。该协议为培养、冷冻和解冻人类患者来源的乳腺类器官提供了全面的分步说明。

Abstract

乳腺癌是一种复杂的疾病,已分为几种不同的组织学和分子亚型。我们实验室开发的患者来源乳腺肿瘤类器官由多个肿瘤来源的细胞群的混合物组成,因此比已建立的2D癌细胞系更近似于肿瘤细胞多样性和环境。类器官是一种理想的 体外 模型,允许细胞 – 细胞外基质相互作用,已知在细胞 – 细胞相互作用和癌症进展中起重要作用。患者来源的类器官也比小鼠模型具有优势,因为它们是人类来源的。此外,它们已被证明可以概括患者肿瘤的基因组、转录组和代谢异质性;因此,它们能够代表肿瘤的复杂性以及患者的多样性。因此,他们准备为靶标发现和验证以及药物敏感性测定提供更准确的见解。在该协议中,我们详细演示了如何从切除的乳腺肿瘤(癌症类器官)或还原性乳房整形术衍生的乳腺组织(正常类器官)中建立患者来源的乳腺类器官。接下来是3D类器官培养,扩增,传代,冷冻以及患者来源的乳腺类器官培养物的解冻的全面说明。

Introduction

乳腺癌 (BC) 是女性中最常见的恶性肿瘤,据估计,2022 年美国将诊断出 287,850 例新病例1.尽管最近在早期发现方面取得了进展,包括年度筛查、靶向治疗和更好地了解遗传易感性,但它仍然是美国女性癌症死亡的第二大原因>,每年有 40,000 人死于乳腺癌1。乳腺癌目前根据原发肿瘤的组织病理学和分子学评估分为多种亚型。更好的亚型分层通过亚型特异性治疗方案改善了患者的预后2.例如,将HER2鉴定为原癌基因3导致了曲妥珠单抗的发展,这使得这种高度侵袭性的亚型在大多数患者中易于控制4。以患者特异性方式进一步研究这种复杂疾病的遗传学和转录组学将有助于开发和预测更好的患者特异性个性化治疗方案25。患者来源类器官(PDO)是一种很有前途的新模型,可以在分子水平上深入了解癌症,确定新的靶点或生物标志物并设计新的治疗策略678

PDO是源自新鲜切除的原代组织样本的多细胞三维(3D)结构89。它们通过嵌入水凝胶基质(通常由细胞外基质(ECM)蛋白的组合组成)进行三维生长,因此可用于研究肿瘤细胞 – ECM相互作用。PDO代表患者的多样性,并概括了肿瘤的细胞异质性和遗传特征101112。作为体外模型,它们允许基因操作和高通量药物筛选131415此外,PDO可以合理地用于评估患者的药物敏感性和与临床平行的治疗策略,并帮助预测患者结果161718。除化疗外,某些类器官模型也已用于检查个体患者对放化疗的反应1920。鉴于PDO在研究和临床应用中的可喜应用性,美国国家癌症研究所发起了一个国际联盟,即人类癌症模型倡议(HCMI)21,以生成和提供这些肿瘤衍生的新型癌症模型。通过HCMI开发的各种癌症类型的许多类器官模型可通过美国类型培养物保藏(ATCC)获得22

正常的乳腺类器官已被证明由乳腺中存在的不同上皮细胞群组成1123,因此可以作为研究基本生物学过程,分析导致肿瘤发生的驱动突变以及癌细胞起源谱系研究的重要模型615.乳腺肿瘤类器官模型已被用于识别新的靶点,这些靶点正在鼓励开发新疗法的前景,特别是对于耐药肿瘤242526。Guillen等人使用患者来源的异种移植物(PDX)和匹配的PDX衍生类器官(PDxO)模型对难治性乳腺肿瘤进行研究,表明类器官是精准医学的强大模型,可用于评估药物反应和平行指导治疗决策28。此外,开发用于培养具有各种免疫细胞272829,成纤维细胞30,31和微生物3233的PDO的新共培养方法为研究肿瘤微环境对癌症进展的影响提供了机会。虽然许多此类共培养方法正在积极用于胰腺或结直肠肿瘤的PDO,但类似的乳腺PDO共培养方法仅在自然杀伤细胞34和成纤维细胞35上报道。

代表不同乳腺癌亚型的>100个患者来源类器官的第一个生物库由Hans Clevers小组3637开发。作为这项工作的一部分,Clevers小组还开发了第一个用于乳腺类器官生长的复杂培养基,目前广泛使用36。一项后续研究全面介绍了乳腺PDO和患者来源的类器官异种移植物(PDOX)的建立和培养情况38。Welm实验室开发了大量BC PDX模型和PDxO,这些模型和PDxO在含有胎牛血清(FBS)和较少生长因子3940的相对简单的生长培养基中培养。我们独立开发和表征了大量幼稚的患者来源的乳腺癌类器官模型11,并参与了BC PDO模型的开发,作为HCMI计划21的一部分。在这里,我们旨在提供一份实用指南,详细说明我们在生成患者衍生的乳腺类器官模型系统时采用的方法。

Protocol

根据机构审查委员会协议IRB-03-012和IRB 20-0150,并在患者的书面知情同意下,从Northwell Health获得了乳腺癌患者的肿瘤切除以及远端和邻近正常组织。 注意:经生物安全委员会批准,以下提到的所有程序均在指定用于患者样本的哺乳动物组织培养BSL2室中进行。所有程序应按照安全规程执行,以保持生物安全柜中的无菌条件。除非另有说明,否则每个离心步骤均在室温(RT)下进?…

Representative Results

我们已经建立了一个患者来源的乳腺肿瘤类器官的生物库,包括各种亚型11。此外,我们使用 图1中概述的方法建立了多个来自还原性乳房整形组织样本或BC患者的相邻/远端正常乳房的正常类器官系。 各种患者来源的乳腺肿瘤类器官系在其形态(图2)和生长速率(图3)上有所不同。正常的?…

Discussion

我们的实验室已成功采用上述方案从幼稚的肿瘤切除或刮片中建立类器官。我们还利用该协议从通过复位乳房成形术 获得 的乳腺组织或癌症患者的邻近或远端正常乳腺组织中开发正常类器官。约30%-40%的切除原发性肿瘤导致长期(>传代8)肿瘤类器官培养成功。在几次传代后逐渐变细的肿瘤类器官系要么具有正常类器官或基质细胞的生长,要么主要由非增殖性肿瘤细胞组成。进一步评估和?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢Spector实验室的成员在整个工作过程中进行的批判性讨论。我们感谢Norman Sachs和Hans Clevers(荷兰Hubrecht研究所)最初为我们提供他们的类器官培养方案。我们感谢CSHL癌症中心组织学和显微镜共享资源提供的服务和技术专长(NCI 2P3OCA45508)。我们感谢高青博士在组织学样本制备方面的帮助。我们感谢Karen Kostroff博士(Northwell Health)为患者提供肿瘤样本的支持。我们也感谢Northwell Health Biobank团队为样本采集所做的努力,我们感谢患者及其家人捐赠组织用于研究。这项研究得到了CSHL / Northwell Health(D.L.S.),NCI 5P01CA013106-Project 3(D.L.S.)和Leidos Biomedical HHSN26100008(David Tuveson和D.L.S.)的支持。

Materials

15 mL conical tubes VWR 525-1068
175 cm2 tissue culture flask VWR (Corning) 29185-308
37 °C bead bath
37 °C CO2 incubator
50 mL conical tubes VWR 525-1077
50 mL vacuum filtration system (0.22 µm Filter) Millipore Sigma SCGP00525 SCGP00525
500 mL Rapid-Flow Filter Unit, 0.2 µm aPES membrane, 75 mm diameter Nalgene 566-0020
6-well culture plates  Greiner Cellstar 82050-842
75 cm2 tissue culture flask VWR (Corning) 29185-304
96-well opaque plates Corning 353296 For CTG assay
A83-01 Tocris 2939
Advanced DMEM/F12 Gibco 12634-010
B-27 supplement Life Technologies 12587010
BioTek Synergy H4 Hybrid Microplate Reader Fisher Scientific (Agilent) For dual luciferase assay and CTG assay
BSA fraction V (7.5%) Thermo Fisher 15260037
Cell Titer-Glo (CTG) Reagent Promega G9683 luminescent cell viability assay
Centrifuge  Eppendorf 5804
Collagenase from Clostridium histolyticum Millipore Sigma C5138 Type IV
Cryolabels Amazon DTCR-1000 Direct Thermal Cryo-Tags, White, 1.05 x 0.5"
Cryovials  Simport Scientific Inc. T311-1
Countess 3 Automated Cell Counter Thermo Fisher AMQAX2000
DMEM, high glucose, pyruvate Thermo Fisher (Gibco) 11995040
Dual Luciferase Reporter Assay System Promega E1910
Dulbecco’s Phosphate Buffered Saline (1X) Gibco 14190-144 DPBS
Epidermal growth factor (hEGF) Peprotech AF-100-15
Fetal Bovine Serum (FBS) Corning 35-010-CV
FGF-10 (human) Peprotech 100-26
FGF-7/KGF (human) Peprotech 100-19
GlutaMax Life Technologies 35050061
HEK293T cells ATCC CRL-3216  For TOPFlash Assay
HEK293T-HA-Rspondin1-Fc cells R&D Systems 3710-001-01 Cultrex HA-R-Spondin1-Fc 293T Cells
HEPES Life Technologies 15630-080
Heregulinβ-1 (human) Peprotech 100-03
Matrigel Growth Factor Reduced (GFR) Basement Membrane Matrix Corning 356231 Phenol-red free, LDEV-free; basement membrane matrix
Mr. Frosty Cell Freezing Container Thermo Fisher 5100-0001
Mycoplasma detection kit Lonza LT07-418
N-acetyl-l-cysteine Millipore Sigma A9165
Nalgene Rapid-Flow Sterile Disposable Filter Units with PES Membranes Thermo Fisher 166-0045 
Nicotinamide Millipore Sigma N0636
Noggin (human) Peprotech 120-10C
P1000, P200, P10 pipettes with tips
p38 MAPK inhibitor (p38i) SB 202190 Millipore Sigma S7067
Parafilm transparent film
Penicillin-Streptomycin Life Technologies 15140122
Plasmid1: pRL-SV40P Addgene 27163
Plasmid2: M51 Super 8x FOPFlash Addgene 12457
Plasmid3: M50 Super 8x TOPFlash Addgene 12456
pluriStrainer 200 µm pluriSelect 43-50200-01
Primocin Invivogen ANT-PM-1
Recovery Cell Culture Freezing Medium Thermo Fisher (Gibco) 12648-010 cell freezing medium
Red Blood Cell lysis buffer Millipore Sigma 11814389001
R-spondin conditioned media In-house or commercial from Peprotech 120-38
Scalpel (No.10) Sklar Instruments Jun-10
Shaker (Incu-shaker Mini) Benchmark H1001-M
TGF-β receptor inhibitor A 83-01 Tocris 2939
Trypan Blue Stain (0.4%) Gibco 15250-061
TrypLE Express Enzyme (1X), phenol red Life Technologies 12605028 cell dissociation reagent
X-tremeGENE 9 DNA transfection reagent Millipore Sigma 6365779001
Y-27632 Dihydrochloride (RhoKi) Abmole Bioscience Y-27632
Zeocin Thermo Fisher R25001

References

  1. Siegel, R. L., Miller, K. D., Fuchs, H. E., Jemal, A. Cancer statistics, 2022. CA: A Cancer Journal for Clinicians. 72 (1), 7-33 (2022).
  2. Greenwalt, I., Zaza, N., Das, S., Li, B. D. Precision Medicine and Targeted Therapies in Breast Cancer. Surgical Oncology Clinics of North America. 29 (1), 51-62 (2020).
  3. di Fiore, P. P., Pierce, J. H., Kraus, M. H., Segatto, O., King, C. R., Aaronson, S. A. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science. 237 (4811), 178 (1987).
  4. Hortobagyi, G. N., et al. Breast. AJCC Cancer Staging Manual. 4 (4), 589-636 (2017).
  5. Goutsouliak, K., et al. Towards personalized treatment for early stage HER2-positive breast cancer. Nature reviews. Clinical oncology. 17 (4), 233 (2020).
  6. Tuveson, D., Clevers, H. Cancer modeling meets human organoid technology. Science. 364 (6444), 952-955 (2019).
  7. Huang, L., et al. PDX-derived organoids model in vivo drug response and secrete biomarkers. JCI Insight. 5 (21), (2020).
  8. Wood, L. D., Ewald, A. J. Organoids in cancer research: a review for pathologist-scientists. The Journal of Pathology. 254 (4), 395-404 (2021).
  9. Simian, M., Bissell, M. J. Organoids: A historical perspective of thinking in three dimensions. Journal of Cell Biology. 216 (1), 31-40 (2017).
  10. Sumbal, J., Budkova, Z., Traustadóttir, G. &. #. 1. 9. 3. ;., Koledova, Z. Mammary Organoids and 3D Cell Cultures: Old Dogs with New Tricks. Journal of Mammary Gland Biology and Neoplasia. 25 (4), 273-288 (2020).
  11. Bhatia, S., et al. Patient-derived triple negative breast cancer organoids provide robust model systems that recapitulate tumor intrinsic characteristics. Cancer Research. , (2022).
  12. Huang, L., et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell– and patient-derived tumor organoids. Nature Medicine. 21 (11), 1364-1371 (2015).
  13. Bleijs, M., van de Wetering, M., Clevers, H., Drost, J. Xenograft and organoid model systems in cancer. The EMBO Journal. 38 (15), (2019).
  14. Hendriks, D., Clevers, H., Artegiani, B. CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids. Cell Stem Cell. 27 (5), 705-731 (2020).
  15. Dekkers, J. F., et al. Modeling Breast Cancer Using CRISPR-Cas9–Mediated Engineering of Human Breast Organoids. JNCI: Journal of the National Cancer Institute. 112 (5), 540-544 (2020).
  16. Drost, J., Clevers, H. Organoids in cancer research. Nature Reviews Cancer. 18 (7), 407-418 (2018).
  17. Ooft, S. N., et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Science Translational Medicine. 11 (513), 2574 (2019).
  18. Grossman, J. E., et al. Organoid Sensitivity Correlates with Therapeutic Response in Patients with Pancreatic Cancer. Clinical Cancer Research. 28 (4), 708-718 (2022).
  19. Ganesh, K., et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nature Medicine. 25 (10), 1607-1614 (2019).
  20. Yao, Y., et al. Patient-Derived Organoids Predict Chemoradiation Responses of Locally Advanced Rectal Cancer. Cell Stem Cell. 26 (1), 17-26 (2020).
  21. . HCMI Catalog Available from: https://hcmi-searchable-catalog.ni.nih.gov/ (2022)
  22. . Search ATCC Available from: https://www.atcc.org/search#q=hcm&sort=relevancy&numberOfResults=24 (2022)
  23. Rosenbluth, J. M., et al. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages. Nature Communications. 11 (1), (2020).
  24. Pal, P., et al. Endocrine Therapy-Resistant Breast Cancer Cells Are More Sensitive to Ceramide Kinase Inhibition and Elevated Ceramide Levels Than Therapy-Sensitive Breast Cancer Cells. Cancers. 14 (10), 2380 (2022).
  25. Ding, K., et al. Single cell heterogeneity and evolution of breast cancer bone metastasis and organoids reveals therapeutic targets for precision medicine. Annals of Oncology. , (2022).
  26. Sudhan, D. R., et al. Hyperactivation of TORC1 Drives Resistance to the Pan-HER Tyrosine Kinase Inhibitor Neratinib in HER2-Mutant Cancers. Cancer Cell. 37 (2), 183-199 (2020).
  27. Dijkstra, K. K., et al. Generation of Tumor-Reactive T Cells by Co-culture of Peripheral Blood Lymphocytes and Tumor Organoids. Cell. 174 (6), 1586-1598 (2018).
  28. Neal, J. T., et al. Organoid Modeling of the Tumor Immune Microenvironment. Cell. 175 (7), 1972-1988 (2018).
  29. Tsai, S., et al. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer. 18 (1), 1-13 (2018).
  30. Öhlund, D., et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. Journal of Experimental Medicine. 214 (3), 579-596 (2017).
  31. Liu, J., et al. Cancer-Associated Fibroblasts Provide a Stromal Niche for Liver Cancer Organoids That Confers Trophic Effects and Therapy Resistance. Cellular and Molecular Gastroenterology and Hepatology. 11 (2), 407-431 (2021).
  32. Puschhof, J., et al. Intestinal organoid cocultures with microbes. Nature Protocols. 16 (10), 4633-4649 (2021).
  33. Puschhof, J., Pleguezuelos-Manzano, C., Clevers, H. Organoids and organs-on-chips: Insights into human gut-microbe interactions. Cell Host & Microbe. 29 (6), 867-878 (2021).
  34. Chan, I. S., Ewald, A. J. Organoid Co-culture Methods to Capture Cancer Cell–Natural Killer Cell Interactions. Methods in Molecular Biology. 2463, 235-250 (2022).
  35. Chatterjee, S., et al. Paracrine Crosstalk between Fibroblasts and ER+ Breast Cancer Cells Creates an IL1β-Enriched Niche that Promotes Tumor Growth. iScience. 19, 388 (2019).
  36. Sachs, N., et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell. 172 (1-2), 373-386 (2018).
  37. . HUB Organoids: Patient in the lab Available from: https://www.huborganoids.nl (2022)
  38. Dekkers, J. F., et al. Long-term culture, genetic manipulation and xenotransplantation of human normal and breast cancer organoids. Nature Protocols. 16 (4), 1936-1965 (2021).
  39. Guillen, K. P., et al. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nature Cancer. 3 (2), 232 (2022).
  40. . PDX Portal Available from: https://pdxportal.research.bcm.edu/pdxportal/;jsessionid=3rrpefh3qlisqgbbq4vywfywc1dvn2vwaedbnizs.pdxportal?dswid=8217 (2022)
  41. Veeman, M. T., Slusarski, D. C., Kaykas, A., Louie, S. H., Moon, R. T. Zebrafish Prickle, a Modulator of Noncanonical Wnt/Fz Signaling, Regulates Gastrulation Movements. Current Biology. 13 (8), 680-685 (2003).
  42. Chen, X., Prywes, R. Serum-Induced Expression of the cdc25A Gene by Relief of E2F-Mediated Repression . Molecular and Cellular Biology. 19 (7), 4695-4702 (1999).
  43. Sflomos, G., et al. Atlas of lobular breast cancer models: Challenges and strategic directions. Cancers. 13 (21), 5396 (2021).
  44. Sharick, J. T., et al. Metabolic Heterogeneity in Patient Tumor-Derived Organoids by Primary Site and Drug Treatment. Frontiers in Oncology. 10, 1-17 (2020).
check_url/64889?article_type=t

Play Video

Cite This Article
Aggarwal, D., Russo, S., Naik, P., Bhatia, S., Spector, D. L. Establishment and Culture of Patient-Derived Breast Organoids. J. Vis. Exp. (192), e64889, doi:10.3791/64889 (2023).

View Video