Summary

体内神经元钙处理的亚细胞成像

Published: March 17, 2023
doi:

Summary

目前的方法描述了一种非比率方法,使用现成的遗传编码钙指示剂在秀丽隐杆线虫中进行高分辨率、亚区室钙成像

Abstract

钙(Ca 2+)成像已主要用于检查神经元活动,但越来越清楚的是,亚细胞Ca2+处理是细胞内信号传导的关键组成部分。体内亚细胞Ca2+动力学的可视化,其中神经元可以在其天然的完整回路中研究,已被证明在复杂的神经系统中具有技术挑战性。线虫秀丽隐杆线虫的透明度和相对简单的神经系统能够实现荧光标签和指示剂的细胞特异性表达和体内可视化。其中包括已被修饰用于细胞质以及各种亚细胞区室(例如线粒体)的荧光指示剂。该协议能够以亚细胞分辨率在体内进行非比率Ca 2 +成像,从而可以分析Ca2 +动力学,直至单个树突棘和线粒体的水平。在这里,使用具有不同Ca 2 +亲和力的两个可用的遗传编码指示剂来证明使用该协议测量单对兴奋性中间神经元(AVA)中细胞质或线粒体基质内的相对Ca2 +水平。结合秀丽隐杆线虫中可能的遗传操作和纵向观察,该成像方案可能有助于回答有关Ca2 +处理如何调节神经元功能和可塑性的问题。

Introduction

钙离子(Ca2+)是许多细胞类型中高度通用的信息载体。在神经元中,Ca2+负责神经递质的活动依赖性释放,细胞骨架运动的调节,代谢过程的微调,以及适当的神经元维持和功能所需的许多其他机制12。为了确保有效的细胞内信号传导,神经元必须在其细胞质保持较低的基础Ca2+水平3。这是通过合作的Ca 2+处理机制实现的,包括将Ca2+摄取到细胞器中,例如内质网(ER)和线粒体。除了在质膜中排列Ca 2+渗透离子通道外,这些过程还导致整个神经元中细胞质Ca2+的异质水平。

休息和神经元激活期间的Ca 2+异质性允许对Ca 2+依赖机制进行多种的,位置特异性的调节1。Ca 2+浓度特异性作用的一个例子是通过肌醇1,4,5-三磷酸(InsP3)受体从ER释放Ca2+低 Ca2+ 水平与 InsP3 相结合是打开受体的钙渗透性孔所必需的。或者,高Ca2+水平直接或间接抑制受体4。Ca 2+稳态对正常神经元功能的重要性得到了证据的支持,表明细胞内Ca 2+处理和信号传导中断是神经退行性疾病和自然衰老发病机制的早期步骤56。具体来说,ER和线粒体的异常Ca2+摄取和释放与阿尔茨海默病,帕金森病和亨廷顿病67的神经元功能障碍的发作有关。

研究自然衰老或神经变性过程中的Ca 2+稳态失调需要纵向观察活的,完整的生物体中具有亚细胞分辨率的Ca2+水平,其中天然细胞结构(即突触的排列和离子通道的分布)得以维持。为此,该协议为使用两种现成的基因编码Ca 2+传感器以高空间和时间分辨率记录体内Ca 2+动力学提供了指导。秀丽隐杆线虫中使用所述方法获得的代表性结果表明,单个神经元的细胞质或线粒体基质中Ca 2+指示剂的表达如何允许快速获取荧光图像(高达50 Hz),这些荧光图像说明了Ca 2+动力学,并具有识别单个脊柱样结构和单个线粒体内Ca 2+水平的额外能力。

Protocol

1. 创造转基因菌株 使用选择的克隆方法8,9,克隆表达载体以包含Pflp-18或Prig-3启动子(用于腹侧神经索中的AVA特异性信号),然后选择Ca2+指示剂,然后是3′ UTR(有关更多信息,请参阅讨论)10。质粒及其来源的列表可在补充表1中找到。 遵循既定的方案,通过显微注射含有…

Representative Results

这两种方案能够以高空间分辨率快速获取体内单个神经突的亚细胞区域和细胞器内的差异Ca2+水平。第一个方案允许以高时间和空间分辨率测量细胞质Ca2+。这里使用谷氨酸能AVA命令中间神经元15中GCaMP6f的细胞特异性表达来证明这一点,其神经突贯穿腹侧神经索的整个长度。GCaMP6f荧光(50 Hz)的快速采集能够检测Ca 2+流入的方向传播(…

Discussion

实施所述方法时的第一个考虑因素涉及为给定的研究问题选择具有理想特性的Ca2+指标。细胞质Ca 2+指示剂通常对Ca 2+具有高亲和力,这些指示剂对Ca 2+的敏感性与动力学(开/关速率)成反比1617。这意味着需要根据感兴趣的现象优先考虑Ca2+灵敏度或动力学。对于具有相对较高的基础Ca 2+水平的亚细胞区室,例如E…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国国立卫生研究院(NIH)(R01-NS115947授予F. Hoerndli)的支持。我们还要感谢Attila Stetak博士提供的pAS1质粒。

Materials

100x/1.40 Oil objective   Olympus   UPlanSApo
10x/0.40 Objective  Olympus   UPlanSApo
22 mm x 22 mm Cover glass  VWR  48366-227 
Agarose SFR  VWR  J234-100G 
Beam homogenizer Andor Technologies Borealis upgrade to CSU-X1
CleanBench laboratory table  TMC  With vibration control
Disposable culture tubes VWR  47729-572  13 mm x 100 mm
Environmental chamber Thermo Scientific 3940 Set to 20 °C
Filter wheel or slider ASI For 25 mm diameter filters
FJH 185 Caenorhabditis Genetics Center  FJH 185 Worm strain
FJH 597 Caenorhabditis Genetics Center FJH 597 Worm strain
GFP bandpass emission filter  Chroma  525 ± 50 nm (25 mm diameter)
ILE laser combiner  Andor Technologies  4 laser lines 
ILE solid state 488 nm laser Andor Technologies  50 mW
ImageJ National Institutes of Health Version 1.52a
IX83 Spinning disk confocal microscope  Olympus  With Yokogawa CSU-X1 spinning disc
iXon Ultra EMCCD camera  Andor Technologies 
Low auto-fluorescence immersion oil  Olympus  Z-81226
MetaMorph  Molecular Devices  Version 7.10.1 
Microscope control box Olympus IX3-CBH
Muscimol  MP Biomedical / Sigma 02195336-CF 
pAS1 AddGene 194970 Plasmid
pBSKS Stratagene
pCT61 Plasmid available from Hoerndli/Maricq lab upon request
pJM23 Plasmid available from Hoerndli/Maricq lab upon request
pKK1  AddGene  194969 Plasmid
Polybead microspheres  Polysciences Inc.  00876-15  0.094 µm
Stability chamber Norlake Scientific NSRI241WSW/8H Set to 15 °C
Stage controller ASI With filter wheel control
Standard microscope slide Premiere 9108W-E 75 mm x 25 mm x 1 mm
Touch panel controller Olympus I3-TPC
Z-drift corrector  Olympus  IX3-ZDC2

References

  1. Berridge, M. J. Neuronal calcium signaling. Neuron. 21 (1), 13-26 (1998).
  2. Brini, M., Calì, T., Ottolini, D., Carafoli, E. Neuronal calcium signaling: Function and dysfunction. Cellular and Molecular Life Sciences. 71 (15), 2787-2814 (2014).
  3. Brini, M., Calì, T., Ottolini, D., Carafoli, E. Intracellular calcium homeostasis and signaling. Metal Ions in Life Sciences. 12, 119-168 (2013).
  4. Berridge, M. J. The inositol trisphosphate/calcium signaling pathway in health and disease. Physiological Reviews. 96 (4), 1261-1296 (2016).
  5. Schrank, S., Barrington, N., Stutzmann, G. E. Calcium-handling defects and neurodegenerative disease. Cold Spring Harbor Perspectives in Biology. 12 (7), 035212 (2020).
  6. Pchitskaya, E., Popugaeva, E., Bezprozvanny, I. Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium. 70, 87-94 (2018).
  7. Jadiya, P., et al. Impaired mitochondrial calcium efflux contributes to disease progression in models of Alzheimer’s disease. Nature Communications. 10 (1), 3885 (2019).
  8. Zeiser, E., Frøkjær-Jensen, C., Jorgensen, E., Ahringer, J. MosSCI and gateway compatible plasmid toolkit for constitutive and inducible expression of transgenes in the C. elegans germline. PLoS One. 6 (5), 20082 (2011).
  9. Zhu, B., Cai, G., Hall, E. O., Freeman, G. J. In-FusionTM assembly: Seamless engineering of multidomain fusion proteins, modular vectors, and mutations. Biotechniques. 43 (3), 354-359 (2007).
  10. Evans, T. C. Transformation and Microinjection. WormBook. , (2006).
  11. Giordano-Santini, R., Dupuy, D. Selectable genetic markers for nematode transgenesis. Cellular and Molecular Life Sciences. 68 (11), 1917-1927 (2011).
  12. Stiernagle, T. Maintenance of C. elegans. WormBook. , (2006).
  13. Stiernagle, T. Maintenance of C. elegans: Transferring worms grown on NGM plates. WormBook. , (2006).
  14. Ogama, T. A beginner’s guide to improving image acquisition in fluorescence microscopy. The Biochemist. 42 (6), 22-27 (2020).
  15. Mellem, J. E., Brockie, P. J., Madsen, D. M., Maricq, A. v. Action potentials contribute to neuronal signaling in C. elegans. Nature Neuroscience. 11 (8), 865-867 (2009).
  16. Zhang, Y., et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations. bioRxiv. , (2021).
  17. Kerruth, S., Coates, C., Dürst, C. D., Oertner, T. G., Török, K. The kinetic mechanisms of fast-decay red-fluorescent genetically encoded calcium indicators. Journal of Biological Chemistry. 294 (11), 3934-3946 (2019).
  18. de Juan-Sanz, J., et al. Axonal endoplasmic reticulum Ca2+ content controls release probability in CNS nerve terminals. Neuron. 93 (4), 867-881 (2017).
  19. Fung, W., Wexler, L., Heiman, M. G. Cell-type-specific promoters for C. elegans glia. Journal of Neurogenetics. 34 (3-4), 335-346 (2020).
  20. Ali, F., Kwan, A. C. Interpreting in vivo calcium signals from neuronal cell bodies, axons, and dendrites: a review. Neurophotonics. 7 (1), 011402 (2019).
  21. Tian, L., et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature Methods. 6 (12), 875-881 (2009).
  22. Mank, M., et al. A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nature Methods. 5 (9), 805-811 (2008).
  23. Birkner, A., Tischbirek, C. H., Konnerth, A. Improved deep two-photon calcium imaging in vivo. Cell Calcium. 64, 29-35 (2017).
  24. Ryan, K. C., Laboy, J. T., Norman, K. R. Deregulation of mitochondrial calcium handling due to presenilin loss disrupts redox homeostasis and promotes neuronal dysfunction. Antioxidants. 11 (9), 1642 (2022).
  25. Yang, H. H., et al. Subcellular imaging of voltage and calcium signals reveals neural processing in vivo. Cell. 166 (1), 245-257 (2016).
  26. Takahashi, N., Oertner, T. G., Hegemann, P., Larkum, M. E. Active cortical dendrites modulate perception. Science. 354 (6319), 1587-1590 (2016).
  27. Nicoletti, M., et al. Biophysical modeling of C. elegans neurons: Single ion currents and whole-cell dynamics of AWCon and RMD. PLoS One. 14 (7), 0218738 (2019).
  28. Church, P. J., Stanley, E. F. Single L-type calcium channel conductance with physiological levels of calcium in chick ciliary ganglion neurons. The Journal of Physiology. 496, 59-68 (1996).
  29. O’Hare, J. K., et al. Compartment-specific tuning of dendritic feature selectivity by intracellular Ca 2+ release. Science. 375 (6586), (2022).
  30. Mclntire, S. L., Jorgensen, E., Horvitz, H. R. Genes required for GABA function in Caenorhabditis elegans. Nature. 364 (6435), 334-337 (1993).
  31. Doser, R. L., Amberg, G. C., Hoerndli, F. J. Reactive oxygen species modulate activity-dependent AMPA receptor transport in C. elegans. The Journal of Neuroscience. 40 (39), 7405-7420 (2020).
  32. Wu, J., et al. A long Stokes shift red fluorescent Ca2+ indicator protein for two-photon and ratiometric imaging. Nature Communications. 5, 5262 (2014).
  33. Cho, J. -. H., et al. The GCaMP-R family of genetically encoded ratiometric calcium indicators. ACS Chemical Biology. 12 (4), 1066-1074 (2017).
  34. Smith, J. J., et al. A light sheet fluorescence microscopy protocol for Caenorhabditis elegans larvae and adults. Frontiers in Cell and Developmental Biology. 10, 1012820 (2022).
  35. Müller, M., et al. Mitochondria and calcium regulation as basis of neurodegeneration associated with aging. Frontiers in Neuroscience. 12, 470 (2018).
  36. Nikoletopoulou, V., Tavernarakis, N. Calcium homeostasis in aging neurons. Frontiers in Genetics. 3, 200 (2012).
  37. Chen, C. -. H., Chen, Y. -. C., Jiang, H. -. C., Chen, C. -. K., Pan, C. -. L. Neuronal aging: Learning from C. elegans. Journal of Molecular Signaling. 8 (1), 14 (2013).
  38. Saberi-Bosari, S., Huayta, J., San-Miguel, A. A microfluidic platform for lifelong high-resolution and high throughput imaging of subtle aging phenotypes in C. elegans. Lab on a Chip. 18 (20), 3090-3100 (2018).
  39. Sridhar, N., Fajrial, A. K., Doser, R. L., Hoerndli, F. J., Ding, X. Surface acoustic wave microfluidics for repetitive and reversible temporary immobilization of C. elegans. Lab on a Chip. 22 (24), 4882-4893 (2022).
check_url/64928?article_type=t

Play Video

Cite This Article
Doser, R., Knight, K. M., Deihl, E., Hoerndli, F. Subcellular Imaging of Neuronal Calcium Handling In Vivo. J. Vis. Exp. (193), e64928, doi:10.3791/64928 (2023).

View Video