Summary

توليد خطوط خلايا خروج المغلوب المرتبطة بالسنترومير Protein-E CENP-E-/- باستخدام نظام كريسبر / كاس 9

Published: June 23, 2023
doi:

Summary

تشير هذه المقالة إلى بناء خلايا خروج المغلوب المرتبطة بالبروتين E (CENP-E) باستخدام نظام CRISPR / Cas9 وثلاث استراتيجيات فحص قائمة على النمط الظاهري. لقد استخدمنا خط الخلايا الضربة القاضية CENP-E لإنشاء نهج جديد للتحقق من خصوصية وسمية مثبطات CENP-E ، وهو أمر مفيد لتطوير الأدوية والبحوث البيولوجية.

Abstract

برز نظام كريسبر (التكرارات العنقودية القصيرة المتباعدة بانتظام) / Cas9 كأداة قوية لتحرير الجينات بدقة وكفاءة في مجموعة متنوعة من الكائنات الحية. البروتين E المرتبط بالسنترومير (CENP-E) هو كينيسين موجه بنهاية زائد مطلوب لالتقاط الأنابيب الدقيقة الحركية ، ومحاذاة الكروموسوم ، ونقطة تفتيش تجميع المغزل. على الرغم من أن الوظائف الخلوية لبروتينات CENP-E قد تمت دراستها جيدا ، فقد كان من الصعب دراسة الوظائف المباشرة لبروتينات CENP-E باستخدام البروتوكولات التقليدية لأن استئصال CENP-E يؤدي عادة إلى تنشيط نقطة تفتيش تجميع المغزل ، وتوقف دورة الخلية ، وموت الخلايا. في هذه الدراسة ، قمنا بإخراج جين CENP-E تماما في خلايا HeLa البشرية ونجحنا في إنشاء خلايا CENP-E-/- HeLa باستخدام نظام CRISPR / Cas9.

تم إنشاء ثلاث استراتيجيات فحص محسنة قائمة على النمط الظاهري ، بما في ذلك فحص مستعمرة الخلايا ، والأنماط الظاهرية لمحاذاة الكروموسومات ، وشدة الفلورسنت لبروتينات CENP-E ، والتي تعمل بشكل فعال على تحسين كفاءة الفحص ومعدل النجاح التجريبي لخلايا CENP-E بالضربة القاضية. الأهم من ذلك ، أن حذف CENP-E يؤدي إلى اختلال الكروموسوم ، والموقع غير الطبيعي لبروتينات نقطة التفتيش الانقسامية BUB1 سيرين / ثريونين كيناز B (BubR1) ، والعيوب الانقسامية. علاوة على ذلك ، استخدمنا نموذج خلية HeLa بالضربة القاضية CENP-E لتطوير طريقة تحديد مثبطات CENP-E المحددة.

في هذه الدراسة ، تم وضع نهج مفيد للتحقق من خصوصية وسمية مثبطات CENP-E. علاوة على ذلك ، تقدم هذه الورقة بروتوكولات تحرير الجينات CENP-E باستخدام نظام CRISPR / Cas9 ، والذي يمكن أن يكون أداة قوية للتحقيق في آليات CENP-E في انقسام الخلايا. علاوة على ذلك ، سيساهم خط الخلايا الضربة القاضية CENP-E في اكتشاف مثبطات CENP-E والتحقق من صحتها ، والتي لها آثار مهمة على تطوير الأدوية المضادة للأورام ، ودراسات آليات انقسام الخلايا في بيولوجيا الخلية ، والتطبيقات السريرية.

Introduction

يتوسط تحرير الجينوم الهندسي التعديلات المستهدفة للجينات في مجموعة متنوعة من الخلايا والكائنات الحية. في حقيقيات النوى ، يمكن إدخال طفرات خاصة بالموقع من خلال تطبيقات النيوكليازات الخاصة بالتسلسل التي تحفز إعادة التركيب المتماثل للحمض النوويالمستهدف 1. في السنوات الأخيرة ، تم تصميم العديد من تقنيات تحرير الجينوم ، بما في ذلك نوكلياز إصبع الزنك (ZFNs) 2,3 ، والنوكليازات المستجيبة الشبيهة بمنشط النسخ (TALENs) 4,5 ، و meganucleases 6,7 ، لشق الجينومات في مواقع محددة ، ولكن هذه الأساليب تتطلب هندسة بروتين معقدة وإجراءات تجريبية زائدة عن الحاجة. أظهرت الدراسات أن النوع الثاني من بدائية النواة العنقودية المتجمعة بانتظام بين التكرارات القصيرة المتباعدة (CRISPR) / Cas هي تقنية فعالة لتحرير الجينات ، والتي تتوسط على وجه التحديد انقسام الحمض النووي الموجه بالحمض النووي الريبي والموقع في مجموعة واسعة من الخلايا والأنواع8،9،10،11. أحدثت تقنية الضربة القاضية الجينية CRISPR / Cas9 ثورة في مجالات البيولوجيا الأساسية والتكنولوجيا الحيوية والطب12.

طورت البكتيريا ومعظم العتائق نظاما مناعيا تكيفيا قائما على الحمض النووي الريبي يستخدم بروتينات كريسبر وكاس لتحديد وتدمير الفيروسات والبلازميدات13. العقدية المقيحة يحتوي Cas9 (SpCas9) endonuclease على محلول تقاطع هوليداي الشبيه ب RuvC (RuvC) ومجال His-Asn-His (HNH) ، والذي يمكنه التوسط بكفاءة في الفواصل ذات التسلسل المزدوج (DSBs) من خلال توفير الحمض النووي الريبي أحادي التوجيه الاصطناعي (sgRNA) الذي يحتوي على CRISPR RNAs (crRNA) و crRNA المنشط (tracrRNA) 14،15،16. يمكن إصلاح DSBs من خلال مسار الانضمام النهائي غير المتماثل (NHEJ) أو مسار الإصلاح الموجه بالتماثل (HDR) ، والذي يقدم طفرات متعددة ، بما في ذلك عمليات الإدراج أو الحذف أو بدائل النوكليوتيدات المفردة الخالية من الندبات ، في خلايا الثدييات 1,8. يمكن استخدام كل من NHEJ المعرض للخطأ ومسار HDR عالي الدقة للتوسط في خروج المغلوب الجيني من خلال عمليات الإدراج أو الحذف ، والتي يمكن أن تسبب طفرات إزاحة الإطار وكودونات التوقف المبكرة10.

مطلوب Kinesin-7 CENP-E لربط الأنابيب الدقيقة الحركية ومحاذاة الكروموسوم أثناء انقسام الخلايا17،18،19. الحقن المجهري للأجسام المضادة20،21 ، استنفاد siRNA22،23 ، التثبيط الكيميائي24،25،26 ، والحذف الجيني27،28،29 من CENP-E يؤدي إلى اختلال الكروموسوم ، وتنشيط نقطة تفتيش تجميع المغزل والعيوب الانقسامية ، مما يؤدي إلى اختلال الصيغة الصبغية وعدم استقرار الكروموسومات19,30. في الفئران ، يؤدي حذف CENP-E إلى نمو غير طبيعي وفتك جنيني في المراحل المبكرة جدا من التطور27،29،31. عادة ما يؤدي الحذف الجيني ل CENP-E إلى اختلال الكروموسوم وموت الخلايا26،27،29 ، وهو ما يمثل عقبة في دراسة وظائف وآليات بروتينات CENP-E.

أنشأت دراسة حديثة خط خلية خروج المغلوب CENP-E مشروطا باستخدام طريقة تحرير الجينات CRISPR / Cas9 القابلة للحث على الأوكسين32 ، والتي تتيح التدهور السريع لبروتينات CENP-E في وقت قصير نسبيا33. ومع ذلك ، حتى الآن ، لم يتم إنشاء خطوط خلايا خروج المغلوب CENP-E مستقرة ، وهو تحد تقني لم يتم حله في بيولوجيا CENP-E. بالنظر إلى المتانة الجينية34 ، واستجابات التعويض الجيني35،36،37 ، والبيئات المعقدة داخل الخلايا ، حيث أن العواقب المباشرة للحذف الكامل ل CENP-E قد تكون معقدة ولا يمكن التنبؤ بها ، فمن المهم إنشاء خطوط خلايا CENP-E للتحقيق في آليات محاذاة الكروموسوم ، ونقطة تفتيش تجميع المغزل ، ومسارات إشارات المصب.

يعد اكتشاف مثبطات CENP-E وتطبيقاتها أمرا مهما لعلاج السرطان. حتى الآن ، تم العثور على سبعة أنواع من مثبطات CENP-E وتوليفها ، بما في ذلك GSK923295 ومشتقاته24,25 ، PF-2771 38,39 ، مشتقات سقالة إيميدازو [1,2-a]بيريدين 40,41 ، مركب-A42,43 ، سينتيلين44,45 ، UA6278446 ، ومشتقات بنزو بيرولو [2,1-ب] ثيازول47. من بين هذه المثبطات ، GSK923295 هو مثبط CENP-E الخيفي والفعال الذي يرتبط بالمجال الحركي ل CENP-E ويثبط نشاط ATPase المحفز بالأنابيب الدقيقة CENP-E مع Ki من 3.2 ± 0.2 نانومتر24,25. ومع ذلك ، بالمقارنة مع الآثار المثبطة ل GSK923295 على الخلايا السرطانية المستزرعة ، فإن الآثار العلاجية ل GSK923295 في مرضى السرطان السريري ليست مثالية48,49 ، مما أثار أيضا مخاوف بشأن خصوصية GSK923295 ل CENP-E. علاوة على ذلك ، فإن الخصوصية والآثار الجانبية لمثبطات CENP-E الأخرى على بروتينات CENP-E هي قضايا رئيسية في أبحاث السرطان.

في هذه الدراسة ، قمنا بإخراج جين CENP-E تماما في خلايا HeLa باستخدام نظام CRISPR / Cas9. تم إنشاء ثلاث استراتيجيات فحص محسنة قائمة على النمط الظاهري ، بما في ذلك فحص مستعمرة الخلايا ، والأنماط الظاهرية لمحاذاة الكروموسومات ، وكثافة الفلورسنت لبروتينات CENP-E ، لتحسين كفاءة الفحص ومعدل نجاح تحرير الجينات CENP-E. علاوة على ذلك ، يمكن استخدام خطوط خلايا CENP-E لاختبار خصوصية المركبات المرشحة ل CENP-E.

Protocol

1. بناء ناقلات الضربة القاضية الجينية CRISPR / Cas9 حدد تسلسل الحمض النووي الجينومي المستهدف على جين CENP-E البشري (GenBank Accession No. NM_001286734.2) وتصميم sgRNA باستخدام أداة تصميم CRISPR عبر الإنترنت (http://crispor.tefor.net/). أدخل تسلسلا جينوميا واحدا ، وحدد جينوم “Homo sapiens-human-UCSC Dec 2013 (مجموعة تح?…

Representative Results

تم إنشاء خلايا CENP-E-/- HeLa بنجاح باستخدام نظام CRISPR / Cas9 (الشكل 1). يوضح الشكل 1 الجدول الزمني والخطوات التجريبية الحرجة لهذه الطريقة. أولا ، قمنا بتصميم وتوليف sgRNAs الخاصة ب CENP-E ، وقمنا بتلدين وربط sgRNAs في بلازميد pX458 ، ونقل البلازميد إلى خلايا HeLa ، و?…

Discussion

Kinesin-7 CENP-E هو منظم رئيسي في محاذاة الكروموسوم ونقطة تفتيش تجميع المغزل أثناء انقسام الخلايا17،19،20. عادة ما يؤدي الحذف الجيني ل CENP-E إلى تنشيط نقطة تفتيش تجميع المغزل ، وإيقاف دورة الخلية ، وموت الخلايا27،29،…

Disclosures

The authors have nothing to disclose.

Acknowledgements

نشكر جميع أعضاء مختبر الهيكل الخلوي في جامعة فوجيان الطبية على المناقشات المفيدة. نشكر جون جين لين ، وتشي هونغ هوانغ ، ولينغ لين ، ولي لي بانغ ، ولين يينغ تشو ، وشي لين ، ومين شيا وو في مركز خدمات التكنولوجيا العامة ، جامعة فوجيان الطبية على مساعدتهم الفنية. نشكر Si-Yi Zheng و Ying Lin و Qi Ke في مركز التدريس التجريبي للعلوم الطبية الأساسية في جامعة فوجيان الطبية على دعمهم. تم دعم هذه الدراسة من خلال المنح التالية: المؤسسة الوطنية للعلوم الطبيعية في الصين (رقم المنحة 82001608 و 82101678) ، ومؤسسة العلوم الطبيعية بمقاطعة فوجيان ، الصين (رقم المنحة 2019J05071) ، والصناديق المشتركة لابتكار العلوم والتكنولوجيا ، مقاطعة فوجيان ، الصين (رقم المنحة 2021Y9160) ، ومشروع تمويل بدء البحث العلمي للمواهب عالية المستوى بجامعة فوجيان الطبية (رقم المنحة XRCZX2017025).

Materials

0.25% Trypsin-EDTA Gibco 25200056
1.5 mL centrifuge tube Axygen MCT-150-C
24-well plate Corning 3524
4S Gelred, 10,000x in water Sangon Biotech (Shanghai) A616697
50 mL centrifuge tube Corning 430828
6 cm Petri dish Corning 430166
95% ethanol Sinopharm Chemical Reagent 10009164
96-well plate Corning 3599
Acetic acid Sinopharm Chemical Reagent 10000218 Dissolve in H2O to prepare a 10% working solution.
Agarose Sangon Biotech (Shanghai) A620014
Alexa Fluor 488-labeled Goat Anti-Mouse IgG(H+L) Beyotime A0428 For immunofluorescence. Dissolve in 1% BSA/PBST. 1:500 dilution.
Alexa Fluor 488-labeled Goat Anti-Rabbit IgG(H+L) Beyotime A0423 For immunofluorescence. Dissolve in 1% BSA/PBST. 1:500 dilution.
Alexa Fluor 555-labeled Donkey Anti-Mouse IgG(H+L) Beyotime A0460 For immunofluorescence. Dissolve in 1% BSA/PBST. 1:500 dilution.
Anhydrous ethanol Sinopharm Chemical Reagent 100092690
Anti-BubR1 rabbit monoclonal antibody Abcam ab254326 For immunofluorescence. Dissolve in 1% BSA/PBST. 1:100 dilution 
Anti-CENP-B mouse monoclonal antibody Santa Cruz Biotechnology sc-376392 For immunofluorescence. Dissolve in 1% BSA/PBST. 1:50 dilution.
Anti-CENP-E rabbit monoclonal antibody Abcam ab133583 For immunofluorescence. Dissolve in 1% BSA/PBST. 1:100 dilution.
Anti-fade mounting medium Beyotime P0131 Slowing down the quenching of fluorescent signals.
Anti-α-tubulin mouse monoclonal antibody Abcam ab7291 For immunofluorescence. Dissolve in 1% BSA/PBST. 1:100 dilution.
Biotek Epoch Microplate Spectrophotometer Biotek Instruments Biotek Epoch
Bovine Serum Albumin (BSA) Sinopharm Chemical Reagent 69003435
BpiI (BbsI) Thermo Fisher Scientific ER1011
CellTiter 96 aqueous one solution cell proliferation assay Promega G3580
Centrifuge Eppendorf 5424BK745380
Colchicine Sinopharm Chemical Reagent 61001563
Confocal scanning microscope Leica Leica TCS SP8
Coverslip CITOTEST 80344-1220
DAPI Beyotime C1006
DH5α competent cells Sangon Biotech (Shanghai) B528413
DL2000 DNA marker TaKaRa 3427A
Dulbecco's Modified Eagle Medium (DMEM) Gibco C11995500BT
Endo-free plasmid mini kit Equation 2 Omega D6950
Ezup Column Animal Genomic DNA Purification Kit Sangon Biotech (Shanghai) B518251
Fetal bovine serum Zhejiang Tianhang Biotechnology 11011-8611
Gentian violet Sinopharm Chemical Reagent 71019944 Dissolve in PBS to prepare 0.1% gentian violet/PBS.
Giemsa staining solution Sinopharm Chemical Reagent 71020260
GraphPad Prism version 8.0 software GraphPad www.graphpad.com Statistical analysis.
GSK923295 MedChemExpress HY-10299
HeLa cell line ATCC CCL-2
Humidified incubator Heal Force HF90/HF240
Image J software National Institutes of Health https://imagej.nih.gov/ij/ Image processing and analysis.
Inverted microscope Nanjing Jiangnan Novel Optics XD-202
LB agar powder Sangon Biotech (Shanghai) A507003
Lipo6000 transfection reagent Beyotime C0526
Nikon Ti-S2 microscope Nikon Ti-S2
Opti-MEM reduced serum medium Gibco 31985070
Paraformaldehyde Sinopharm Chemical Reagent 80096618 Dissolve in PBS to prepare 4% paraformaldehyde/PBS.
Penicillin-streptomycin solution HyClone SV30010
SanPrep column DNA gel extraction kit Sangon Biotech (Shanghai) B518131
SanPrep column plasmid mini-preps kit Sangon Biotech (Shanghai) B518191
T4 DNA ligase TaKaRa 2011A
T4 polynucleotide kinase TaKaRa 2021A
TaKaRa Ex Taq TaKaRa RR001A
Triton X-100 Sinopharm Chemical Reagent 30188928 Dissolve in PBS to prepare 0.25% Triton X-100/PBS.
Tween 20 Sinopharm Chemical Reagent 30189328 Dissolve in PBS to prepare 0.1% Tween 20/PBS.

References

  1. Jiang, W., Bikard, D., Cox, D., Zhang, F., Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology. 31 (3), 233-239 (2013).
  2. Bibikova, M., Beumer, K., Trautman, J. K., Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science. 300 (5620), 764 (2003).
  3. Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics. 11 (9), 636-646 (2010).
  4. Joung, J. K., Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology. 14 (1), 49-55 (2013).
  5. Wood, A. J., et al. Targeted genome editing across species using ZFNs and TALENs. Science. 333 (6040), 307 (2011).
  6. Stoddard, B. L. Homing endonuclease structure and function. Quarterly Reviews of Biophysics. 38 (1), 49-95 (2005).
  7. Pâques, F., Duchateau, P. Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Current Gene Therapy. 7 (1), 49-66 (2007).
  8. Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 339 (6121), 819-823 (2013).
  9. Shmakov, S., et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Molecular Cell. 60 (3), 385-397 (2015).
  10. Ran, F. A., et al. Genome engineering using the CRISPR-Cas9 system. Nature Protocols. 8 (11), 2281-2308 (2013).
  11. Jia, N., Patel, D. J. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Nature Reviews Molecular Cell Biology. 22 (8), 563-579 (2021).
  12. Hsu, P. D., Lander, E. S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 157 (6), 1262-1278 (2014).
  13. Horvath, P., Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 327 (5962), 167-170 (2010).
  14. Gasiunas, G., Barrangou, R., Horvath, P., Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America. 109 (39), E2579-E2586 (2012).
  15. Jinek, M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337 (6096), 816-821 (2012).
  16. Jackson, S. A., et al. CRISPR-Cas: Adapting to change. Science. 356 (6333), eaal5056 (2017).
  17. Wood, K. W., Sakowicz, R., Goldstein, L. S., Cleveland, D. W. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell. 91 (3), 357-366 (1997).
  18. Craske, B., Welburn, J. P. I. Leaving no-one behind: how CENP-E facilitates chromosome alignment. Essays in Biochemistry. 64 (2), 313-324 (2020).
  19. Yu, K. W., Zhong, N., Xiao, Y., She, Z. Y. Mechanisms of kinesin-7 CENP-E in kinetochore-microtubule capture and chromosome alignment during cell division. Biology of the Cell. 111 (6), 143-160 (2019).
  20. Schaar, B. T., Chan, G. K., Maddox, P., Salmon, E. D., Yen, T. J. CENP-E function at kinetochores is essential for chromosome alignment. Journal of Cell Biology. 139 (6), 1373-1382 (1997).
  21. McEwen, B. F., et al. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Molecular Biology of the Cell. 12 (9), 2776-2789 (2001).
  22. Yao, X., Abrieu, A., Zheng, Y., Sullivan, K. F., Cleveland, D. W. CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nature Cell Biology. 2 (8), 484-491 (2000).
  23. Kim, Y., Heuser, J. E., Waterman, C. M., Cleveland, D. W. CENP-E combines a slow, processive motor and a flexible coiled coil to produce an essential motile kinetochore tether. Journal of Cell Biology. 181 (3), 411-419 (2008).
  24. Qian, X., et al. Discovery of the first potent and selective inhibitor of Centromere-Associated Protein E: GSK923295. ACS Medicinal Chemistry Letters. 1 (1), 30-34 (2010).
  25. Wood, K. W., et al. Antitumor activity of an allosteric inhibitor of centromere-associated protein-E. Proceedings of the National Academy of Sciences of the United States of America. 107 (13), 5839-5844 (2010).
  26. Pisa, R., Phua, D. Y. Z., Kapoor, T. M. Distinct mechanisms of resistance to a CENP-E inhibitor emerge in near-haploid and diploid cancer cells. Cell Chemical Biology. 27 (7), 850.e6-857.e6 (2020).
  27. Putkey, F. R., et al. Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Developmental Cell. 3 (3), 351-365 (2002).
  28. Weaver, B. A., Silk, A. D., Montagna, C., Verdier-Pinard, P., Cleveland, D. W. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell. 11 (1), 25-36 (2007).
  29. Silk, A. D., et al. Chromosome missegregation rate predicts whether aneuploidy will promote or suppress tumors. Proceedings of the National Academy of Sciences of the United States of America. 110 (44), E4134-E4141 (2013).
  30. Guo, Y., Kim, C., Ahmad, S., Zhang, J., Mao, Y. CENP-E-dependent BubR1 autophosphorylation enhances chromosome alignment and the mitotic checkpoint. Journal of Cell Biology. 198 (2), 205-217 (2012).
  31. Weaver, B. A., Cleveland, D. W. Aneuploidy: instigator and inhibitor of tumorigenesis. Cancer Research. 67 (21), 10103-10105 (2007).
  32. Nishimura, K., Fukagawa, T. An efficient method to generate conditional knockout cell lines for essential genes by combination of auxin-inducible degron tag and CRISPR/Cas9. Chromosome Research. 25 (3-4), 253-260 (2017).
  33. Owa, M., Dynlacht, B. A non-canonical function for Centromere-associated protein-E controls centrosome integrity and orientation of cell division. Communications Biology. 4 (1), 358 (2021).
  34. Barabási, A. L., Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nature Reviews Genetics. 5 (2), 101-113 (2004).
  35. Rossi, A., et al. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature. 524 (7564), 230-233 (2015).
  36. Ma, Z., et al. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature. 568 (7751), 259-263 (2019).
  37. El-Brolosy, M. A., et al. Genetic compensation triggered by mutant mRNA degradation. Nature. 568 (7751), 193-197 (2019).
  38. Kung, P. P., et al. Chemogenetic evaluation of the mitotic kinesin CENP-E reveals a critical role in triple-negative breast cancer. Molecular Cancer Therapeutics. 13 (8), 2104-2115 (2014).
  39. Kim, J. H., et al. Development of a novel HAC-based "gain of signal" quantitative assay for measuring chromosome instability (CIN) in cancer cells. Oncotarget. 7 (12), 14841-14856 (2016).
  40. Hirayama, T., et al. Synthetic studies of centromere-associated protein-E (CENP-E) inhibitors: 1. Exploration of fused bicyclic core scaffolds using electrostatic potential map. Bioorganic & Medicinal Chemistry. 21 (17), 5488-5502 (2013).
  41. Hirayama, T., et al. Synthetic studies on Centromere-associated protein-E (CENP-E) inhibitors: 2. Application of electrostatic potential map (EPM) and structure-based modeling to Imidazo[1,2-a]pyridine derivatives as anti-tumor agents. Journal of Medicinal Chemistry. 58 (20), 8036-8053 (2015).
  42. Ohashi, A., et al. A novel time-dependent CENP-E inhibitor with potent antitumor activity. PLoS One. 10 (12), e0144675 (2015).
  43. Ohashi, A., et al. Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells. Nature Communications. 6, 7668 (2015).
  44. Ding, X., et al. Probing CENP-E function in chromosome dynamics using small molecule inhibitor syntelin. Cell Research. 20 (12), 1386-1389 (2010).
  45. Liu, X., et al. Phase separation drives decision making in cell division. Journal of Biological Chemistry. 295 (39), 13419-13431 (2020).
  46. Henderson, M. C., et al. UA62784, a novel inhibitor of centromere protein E kinesin-like protein. Molecular Cancer Therapeutics. 8 (1), 36-44 (2009).
  47. Yamane, M., et al. Identification of benzo[d]pyrrolo[2,1-b]thiazole derivatives as CENP-E inhibitors. Biochemical and biophysical research communications. 519 (3), 505-511 (2019).
  48. Lock, R. B., et al. Initial testing of the CENP-E inhibitor GSK923295A by the pediatric preclinical testing program. Pediatric Blood & Cancer. 58 (6), 916-923 (2012).
  49. Chung, V., et al. First-time-in-human study of GSK923295, a novel antimitotic inhibitor of centromere-associated protein E (CENP-E), in patients with refractory cancer. Cancer Chemotherapy and Pharmacology. 69 (3), 733-741 (2012).
  50. Hsu, P. D., et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature biotechnology. 31 (9), 827-832 (2013).
  51. Weaver, B. A., Cleveland, D. W. Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. Cancer Cell. 8 (1), 7-12 (2005).
  52. Manchado, E., Guillamot, M., Malumbres, M. Killing cells by targeting mitosis. Cell Death and Differentiation. 19 (3), 369-377 (2012).
  53. Dang, Y., et al. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biology. 16, 280 (2015).
  54. Ratz, M., Testa, I., Hell, S. W., Jakobs, S. CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells. Scientific Reports. 5, 9592 (2015).
  55. Koch, B., et al. Generation and validation of homozygous fluorescent knock-in cells using CRISPR-Cas9 genome editing. Nature Protocols. 13 (6), 1465-1487 (2018).
  56. Yan, Q., et al. Multiplex CRISPR/Cas9-based genome engineering enhanced by Drosha-mediated sgRNA-shRNA structure. Scientific Reports. 6, 38970 (2016).
  57. Cheng, Y., et al. CRISPR/Cas9-mediated chicken TBK1 gene knockout and its essential role in STING-mediated IFN-β induction in chicken cells. Frontiers in Immunology. 9, 3010 (2019).
  58. Zhou, Y., et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature. 509 (7501), 487-491 (2014).
  59. Zeng, W., Guo, L., Xu, S., Chen, J., Zhou, J. High-throughput screening technology in industrial biotechnology. Trends in Biotechnology. 38 (8), 888-906 (2020).
  60. Tsai, S. Q., et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology. 33 (2), 187-197 (2015).
  61. Kim, D., et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nature Biotechnology. 34 (8), 863-868 (2016).
  62. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 533 (7603), 420-424 (2016).
  63. Nishimasu, H., et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. 361 (6408), 1259-1262 (2018).
  64. Wang, H., et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 153 (4), 910-918 (2013).
  65. Ablain, J., Durand, E. M., Yang, S., Zhou, Y., Zon, L. I. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Developmental Cell. 32 (6), 756-764 (2015).
  66. Pickar-Oliver, A., Gersbach, C. A. The next generation of CRISPR-Cas technologies and applications. Nature Reviews Molecular Cell Biology. 20 (8), 490-507 (2019).
  67. Nalawansha, D. A., Gomes, I. D., Wambua, M. K., Pflum, M. K. H. HDAC inhibitor-induced mitotic arrest is mediated by Eg5/KIF11 acetylation. Cell Chemical Biology. 24 (4), 481.e5-492.e5 (2017).
  68. Kavalapure, R. S., et al. Design, synthesis, and molecular docking study of some 2-((7-chloroquinolin-4-yl) amino) benzohydrazide Schiff bases as potential Eg5 inhibitory agents. Bioorganic Chemistry. 116, 105381 (2021).
  69. Calligaris, D., Lafitte, D. Chemical inhibitors: the challenge of finding the right target. Chemistry & Biology. 18 (5), 555-557 (2011).
  70. Łomzik, M., et al. Metal-dependent cytotoxic and kinesin spindle protein inhibitory activity of Ru, Os, Rh, and Ir half-sandwich complexes of Ispinesib-derived ligands. Inorganic Chemistry. 59 (20), 14879-14890 (2020).
  71. Ferro, L. S., et al. Structural and functional insight into regulation of kinesin-1 by microtubule-associated protein MAP7. Science (New York, N.Y.). 375 (6578), 326-331 (2022).
  72. Atherton, J., et al. The mechanism of kinesin inhibition by kinesin-binding protein. eLife. 9, e61481 (2020).
check_url/65476?article_type=t

Play Video

Cite This Article
Xu, M., Chen, J., Xu, Y., Zhang, J., Zhou, Y., He, J., Wu, S., Wei, Y., She, Z. Generation of Centromere-Associated Protein-E CENP-E-/- Knockout Cell Lines using the CRISPR/Cas9 System. J. Vis. Exp. (196), e65476, doi:10.3791/65476 (2023).

View Video