Summary

Eine Anleitung zum Erstellen und Verwenden von hiPSC Abgeleitet NPCs für das Studium der Neurologische Erkrankungen

Published: February 21, 2015
doi:

Summary

This protocol describes how neural progenitor cells can be differentiated from human induced pluripotent stem cells, in order to yield a robust and replicative neural cell population, which may be used to identify the developmental pathways contributing to disease pathogenesis in many neurological disorders.

Abstract

Post-mortem studies of neurological diseases are not ideal for identifying the underlying causes of disease initiation, as many diseases include a long period of disease progression prior to the onset of symptoms. Because fibroblasts from patients and healthy controls can be efficiently reprogrammed into human induced pluripotent stem cells (hiPSCs), and subsequently differentiated into neural progenitor cells (NPCs) and neurons for the study of these diseases, it is now possible to recapitulate the developmental events that occurred prior to symptom onset in patients. We present a method by which to efficiently differentiate hiPSCs into NPCs, which in addition to being capable of further differentiation into functional neurons, can also be robustly passaged, freeze-thawed or transitioned to grow as neurospheres, enabling rapid genetic screening to identify the molecular factors that impact cellular phenotypes including replication, migration, oxidative stress and/or apoptosis. Patient derived hiPSC NPCs are a unique platform, ideally suited for the empirical testing of the cellular or molecular consequences of manipulating gene expression.

Introduction

Genexpressionsstudien von Neuronen in vitro aus humanen induzierten pluripotenten Stammzellen (hiPSCs) von uns 1 differenziert und andere 2,3 zeigen, dass hiPSC Neuronen ähnlich fetalen anstatt Erwachsenen Hirngewebe. Derzeit kann hiPSC basierte Modelle geeigneter für das Studium der Prädisposition statt später Merkmale, neurologischen Erkrankungen. Wir haben bereits berichtet, dass ein signifikanter Anteil der Gen-Signatur von Schizophrenie hiPSC abgeleiteten Neuronen bei Schizophrenie hiPSC neurale Vorläuferzellen (NPC) konserviert, was darauf hinweist, dass NPC eine nützliche Zelltyp für die Untersuchung der molekularen Wege beiträgt, Schizophrenie 1 sein . Wir und andere haben anomale Migration, erhöhten oxidativen Stress und reaktive Sauerstoffspezies, Sensibilität für Unterschwellenumweltbelastungen und einer Beeinträchtigung der Funktion der Mitochondrien bei der Schizophrenie hiPSC NPCs 1,4-6, sowie verringerte neuronale c berichtetVernetzungsoptionen und synaptische Funktion in der Schizophrenie hiPSC Neuronen 5,7-10. Wenn die molekularen Faktoren, die aberrant Migration und / oder oxidativer Stress bei Schizophrenie hiPSC NSC ebenfalls Grundlage der reduzierten neuronalen Konnektivitäts bei Schizophrenie hiPSC abgeleiteten Neuronen könnte NSC ein robustes und hoch replikativen neuronalen Population mit denen die Mechanismen der Erkrankung verantwortlich studieren. Darüber hinaus, weil man schnell erzeugen große Mengen von Zellen und müssen warten nicht Wochen oder Monate für die neuronale Reifung sind NPC basierte Assays geeignet für die Untersuchung von größeren Patientenkohorten und sind empfänglicher für Hochdurchsatz-Screening. Wir glauben, dass hiPSC NPCs können als Näherungswert für die Entwicklungswege potenziell einen Beitrag zur Pathogenese der Erkrankung dienen, wie bereits in so unterschiedlichen Erkrankungen wie Schizophrenie 1 und Huntington-Krankheit 11 gezeigt.

Um NPCs aus hiPSCs, erste neuronale Differenzierung inProduktion von Dual-SMAD Hemmung (0,1 mM und 10 mM LDN193189 SB431542) 12 durchgeführt. Durch Antagonisierung BMP und TGF-Signalisierung mit dieser kleinen Moleküle wird Endoderm und Mesoderm Spezifikation blockiert, die Beschleunigung der neuronalen Differenzierung und die zur Bildung von sichtbaren neuronalen Rosetten innerhalb einer Woche nach Beschichtung. Neuronale Muster tritt früh in diesem Prozess, die vermutlich während der Periode des neuronalen Rosettenbildung und unmittelbar danach. In Ermangelung anderer Hinweise, diese primitiven Nervenzellen gehen von einer vorderen Stirnhirn ähnlichen Schicksal 13. Unmittelbar nach neuronalen Rosettenbildung und während NPC zu beobachtende Erweiterung sind Vorderhirn NPCs mit FGF2 8,14 kultiviert. Sie verfügen über Dual-Linie Potenzial und kann zu neuronalen Populationen von 70-80% III-Tubulin-positiven Neuronen und 20-30% saure Gliafaserprotein (GFAP) -positiven Astrozyten (Abbildung 1) zu unterscheiden. Der Großteil der Vorderhirn hiPSC Neuronen VGLUT1-positiveUnd so sind vermutlich glutamatergen, obwohl etwa 30% der Neuronen GAD67-positive (GABA) 8.

NPCs werden regelmäßig mehr als zehnmal in vitro passagiert und gleichzeitig die konsistente Differenzierung Profile und ohne anfall Karyotyp Anomalien. Gruppen Passagieren NPCs mehr als 40-mal 15, aber wir finden, dass über zehn Passagen, NPCs zeigen eine erhöhte Neigung zu Astrozyten Differenzierung ausgewiesen. NPCs gut vertragen mehrere gefrier taut und wechselte als Neurosphären, indem Sie einfach die Kultivierung in nicht-haftenden Platten wachsen werden. NPCs werden effizient durch virale Vektoren transduziert und ermöglicht eine schnelle Auswertung der molekularen und zellulären Konsequenzen der genetischen Störung und einfach erweiterbar, um ausreichend Material für biochemische Untersuchungen ergeben. Darüber hinaus, da virale Vektoren erlauben robuste Überexpression und / oder Zuschlagskrankheitsrelevanter Gene, entweder Kontroll- oder Patienten gewonnen neural Zellen, kann man diese Plattform nutzen, um die Wirkung der genetischen Hintergrund auf diesen Manipulationen zu testen. Obwohl nicht für die synaptische oder aktivitätsbasierten Assays erfordern ausgereifte Neuronen geeignet, kann NPCs eine praktische Alternative für viele einfache molekulare oder biochemische Analysen von Patienten stammende Nervenzellen sein.

Protocol

1. hiPSC Differenzierung zu neuronalen Vorläuferzellen Wachsen und zu expandieren hiPSCs in menschlichen embryonalen Stammzellen (HES) Medien (Tabelle 1) co-kultiviert auf einem embryonalen Maus-Fibroblasten (MEF) Feeder-Schicht, bis große (aber subkonfluente) Kolonien über eine Embryoidkörper (EB) Zwischen bereit für neuronale Differenzierung (Abbildung 2). Routine hiPSC Kulturbedingungen sind an anderer Stelle beschrieben, 16,17; kurz, wachsen hiPSCs in HES …

Representative Results

Neural Rosetten können morphologisch durch ihre charakteristische Aussehen als runde Clustern Neuroepithelzellen mit apikal-basal Polarität (Abbildung 1) identifiziert werden, mit einem Hellfeldmikroskop. Obwohl NPCs sind in der Regel bei sehr hohen Zelldichte kultiviert, unmittelbar im Anschluss an Passagieren, leicht pyramidenförmige Soma und Neuriten bipolare Struktur sichtbar (Abbildung 1D). Validiert NSC exprimieren NESTIN und SOX2 in der Mehrzahl der Zellen, jedoch III-Tubulin-…

Discussion

Wir haben Methoden, mit denen zu unterscheiden hiPSCs in NPCs, ein neuronales Zelltyp, in dem ein erheblicher Anteil der Gen-Signatur von hiPSC abgeleiteten Neuronen erhalten bleibt und das kann als Näherungswert für die Entwicklungswege potenziell einen Beitrag zur Pathogenese der Erkrankung dienen 8 beschrieben, 11. Darüber, wie wir detailliert haben, sind NPCs ein robust replikativen und einfach transduzierten neuronalen Bevölkerung, die unserer Meinung nach für molekulare und biochemische Untersuchun…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Kristen Brennand is a New York Stem Cell Foundation – Robertson Investigator. The Brennand Laboratory is supported by a Brain and Behavior Young Investigator Grant, National Institute of Health (NIH) grant R01 MH101454 and the New York Stem Cell Foundation.

Materials

Name of Material/ Equipment Company Catalog Number Comments
DMEM/F12 Life Technologies #11330 for HES media
DMEM/F12 Life Technologies #10565 for neural media
KO-Serum Replacement Life Technologies #10828 Needs to be lot tested
Glutamax Life Technologies #35050
NEAA Life Technologies  #11140
2‐mercaptoethanol (55mM 1000x) Life Technologies  #21985-023
N2 Life Technologies  #17502-048 Needs to be lot tested
B27-RA Life Technologies  #12587-010 Needs to be lot tested
FGF2 Life Technologies #13256-029 Resuspend in PBS + 1% BSA
LDN193189 Stemgent #04-0074
SB431542 Stemgent #04-0010
BDNF Peprotech #450-02 Resuspend in PBS + 0.1% BSA
GDNF  Peprotech  #450-10 Resuspend in PBS + 0.1% BSA
Dibutyryl cyclic-AMP Sigma  #D0627 Resuspend in PBS + 0.1% BSA
L-ascorbic acid Sigma #A0278 Resuspend in H20
STEMdiff Neural Rosette Selection Reagent Stemcell Technologies  #05832
Accutase Innovative Cell Technologies AT-104
Collagenase IV Life Technologies #17104019
CF1 mEFs Millipore #PMEF-CF
Poly-L-Ornithine Sigma P3655
Laminin, Natural Mouse 1mg Life Technologies #23017-015
BD Matrigel BD #354230 Resuspend on ice in cold DMEM at 10mg/ml, use 1mg per two 6-well plate equivalent
Tissue culture treated 6-well plates Corning 3506
Ultra low attachment 6-well plates Corning 3471
goat anti-Sox2  Santa Cruz sc­17320 use at 1:200
mouse anti-human Nestin Millipore MAB5326 use at 1:200
rabbit anti-βIII-tubulin Covance PRB­435P use at 1:500
mouse anti-βIII-tubulin Covance MMS­435P use at 1:500
mouse anti-MAP2AB Sigma M1406 use at 1:200
Plate centrifuge Beckman Coulter Beckman Coulter Allegra X-14 (with SX4750 plate carrier)

References

  1. Brennand, K., et al. Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Mol Psychiatry. , (2014).
  2. Nicholas, C. R., et al. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell. 12, 573-586 (2013).
  3. Mariani, J., et al. Modeling human cortical development in vitro using induced pluripotent stem cells. Proc Natl Acad Sci U S A. 109, 12770-12775 (2012).
  4. Hashimoto-Torii, K., et al. Roles of heat shock factor 1 in neuronal response to fetal environmental risks and its relevance to brain disorders. Neuron. 82, 560-572 (2014).
  5. Robicsek, O., et al. Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry. 18 (10), 1067-1076 (2013).
  6. Paulsen, B. D., et al. Altered oxygen metabolism associated to neurogenesis of induced pluripotent stem cells derived from a schizophrenic patient. Cell Transplant. 21 (7), 1547-1559 (2012).
  7. Yu, D. X., et al. Modeling hippocampal neurogenesis using human pluripotent stem cells. Stem Cell Reports. 2, 295-310 (2014).
  8. Brennand, K. J., et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature. 473 (7346), 221-225 (2011).
  9. Wen, Z., et al. Synaptic dysregulation in a human iPS cell model of mental disorders. Nature. , (2014).
  10. Zhang, L., Song, X., Mohri, Y., Qiao, L. Role pf Inflammation and Tumor Microenvironment in the Development of Gastrointestinal Cancers: What Induced Pluripotent Stem Cells Can Do. Current stem cell research & therapy. , (2014).
  11. An, M. C., et al. Genetic Correction of Huntington’s Disease Phenotypes in Induced Pluripotent Stem Cells. Cell Stem Cell. 11 (2), 253-263 (2012).
  12. Chambers, S. M., et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 27, 275-280 (2009).
  13. Pankratz, M. T., et al. Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells. 25, 1511-1520 (2007).
  14. Marchetto, M. C., et al. A model for neural development and treatment of rett syndrome using human induced pluripotent stem cells. Cell. 143, 527-539 (2010).
  15. Sareen, D., et al. Chromosome 7 and 19 trisomy in cultured human neural progenitor cells. PLoS One. 4, e7630 (2009).
  16. Thomson, J. A., et al. Embryonic stem cell lines derived from human blastocysts. Science. 282, 1145-1147 (1998).
  17. Cowan, C. A., et al. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med. 350, 1353-1356 (2004).
  18. Ludwig, T. E., et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 24, 185-187 (2006).
  19. Coufal, N. G., et al. L1 retrotransposition in human neural progenitor cells. Nature. 460, 1127-1131 (2009).
  20. Xia, G., et al. Generation of human-induced pluripotent stem cells to model spinocerebellar ataxia type 2 in vitro. Journal of molecular neuroscience : MN. 51, 237-248 (2013).
  21. Aasen, T., et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 26, 1276-1284 (2008).
  22. Delaloy, C., et al. MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell. 6, 323-335 (2010).
  23. Kriks, S., et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. 480, 547-551 (2011).
  24. Maroof, A. M., et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell. 12, 559-572 (2013).
  25. Shi, Y., Kirwan, P., Smith, J., Robinson, H. P., Livesey, F. J. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci. 15, 477-486 (2012).
  26. Espuny-Camacho, I., et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron. 77, 440-456 (2013).

Play Video

Cite This Article
Topol, A., Tran, N. N., Brennand, K. J. A Guide to Generating and Using hiPSC Derived NPCs for the Study of Neurological Diseases. J. Vis. Exp. (96), e52495, doi:10.3791/52495 (2015).

View Video