Summary

光图案蛋白质和细胞中的水环境中使用二氧化钛<sub> 2</sub>光催化

Published: October 26, 2015
doi:

Summary

We describe a protocol for modifying cell affinity of a scaffold surface in aqueous environment. The method takes advantage of titanium dioxide photocatalysis to decompose organic film in the photo-irradiated region. We show that it can be used to create microdomains of scaffolding proteins, both ex situ and in situ.

Abstract

吸附的二氧化钛(TiO 2的)的表面上的有机污染物可以通过光催化下的紫外线(UV)光分解。在这里,我们描述了一种新的协议采用氧化钛光催化局部改变衬底表面的细胞亲和力。在这个实验中,一个薄的TiO 2膜为溅射镀膜在玻璃盖玻片,并在TiO 2表面随后改性以从十八烷基三氯硅烷(OTS)衍生的有机硅烷单层,其抑制细胞粘附。将样品浸在细胞培养基中,和聚焦UV光照射至一个八角形区域。当神经元细胞系PC12细胞铺在样本,细胞粘附只在紫外线照射的区域。进一步的研究表明这种表面改性可以在原位进行也就是说,即使当细胞生长在衬底上。适当的修改表面的所需的细胞外矩阵Protein胶原存在于在紫外线照射时的介质。这里提出的技术可以潜在地在图案形成多种细胞类型可以采用用于构建共培养系统或任意地操纵细胞培养下。

Introduction

半导体光刻工艺及其衍生物-诸如光刻1,2,电子束光刻3-6,和微接触印刷7-10 -现在已成为一个既定的工具在细胞生物学生长的活细胞在限定位置和几何形状。图案形成方法依赖于使用微制造基底的,由微岛细胞容许涂料在非允许的背景。例如基底用作模板图案的细胞。这些技术为我们提供了新的方法来设计的细胞和它们的功能在一个单和多细胞水平上,以提取细胞的固有特性,并增加细胞为基础的药物筛选11的吞吐量。

在细胞图案化的自由度度会大大增加,如果模板图案几何可以改变在原位 ,当细胞是上一次一培养urface。常规方法的图案形成,不能直接应用于这里,因为它们处理样品中的气氛或真空。因此各 ​​种新型的表面改性技术已被提出,它是基于例如,在光反应性化合物12,13或激光烧蚀5,14,仅举几例。所提出的方法已经由Robertus 等人已很好地审查 。15,以及最近由Choi 等人的 16和中西17。

在这里,在这篇文章中,我们描述了一种新的原位表面修饰,这需要对二氧化钛的优势有机分子的光催化分解( 氧化钛)表面18,19协议。在该方法中,TiO 2膜被插入在玻璃基板和接口单元中的有机薄膜之间,且有机薄膜通过局部地照射紫外线(UV)的分解原位光到感兴趣的区域(λ<388纳米)。我们表明,新的协议可以用于创建细胞外基质蛋白和活细胞双方易地和原位微图案。 氧化钛是生物相容的,化学稳定的,且光学透明的,特征,其中使得它友好引入在细胞培养实验。该协议提供了一个材料科学为基础的替代修改细胞培养支架的细胞培养环境。

Protocol

包被的玻璃盖玻片1.准备二氧化钛号码使用金刚石划片盖玻片。这不仅有助于跟踪每个盖玻片的同时也确保了样品的正确的一面朝上。清洁的盖玻片,第一下运行DDH 2 O的,然后通过浸入它们食人鱼溶液(H 2 SO 4 :H 2 O 2 = 4:1)。 10分钟后,彻底冲洗盖玻片,8次双蒸2 O.在干燥N 2流盖玻片。 在射频(RF)溅射系统设置的 T…

Representative Results

图2A示出了溅射沉积的 TiO 2膜的横截面扫描电子显微镜(SEM)图像。从观察,膜的厚度估计为大约150纳米。引人注目这里是所沉积的TiO 2膜的平整度。通过原子力显微镜(AFM)进一步分析显示,在表面的根均方(RMS)粗糙度为0.2纳米( 图2B)。 当TiO 2的表面被改性以OTS,然后浸渍在含有血清的生长培养基中,血清白蛋白吸附到…

Discussion

在我们目前的协议, 氧化钛膜通过射频磁控溅射形成。我们是有利于沉积的这种方法,因为它允许我们可重复使用亚纳米粗糙度调制成光催化氧化钛薄膜。虽然溅射淀积过程是熟悉的材料科学家和电子工程师,它可能不是很访问生物学家。在这种情况下,旋涂的TiO 2膜 。将另外的选择23。在该方法中, 氧化钛纳米颗粒溶解在溶剂中通过离心力铺展?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Authors thank Mr. Kotaro Okubo for the kind assistance with SEM imaging. This work was supported by the Japan Society for the Promotion of Science Grant-in-Aid for Basic Research (B) (20310069), Grant-in-Aid for Research Activity Start-up (25880021), and by research grants from the Kurata Memorial Hitachi Science and Technology Foundation and the Nippon Sheet Glass Foundation for Materials Science and Engineering.

Materials

Glass coverslip Warner Instruments CS-15R15 15 mm, #1.5 thickness
Diamond scriber Ogura Jewel Industry D-Point Pen
RF sputtering system ANELVA SPC350
TiO2 sputtering target Kojundo Chemical Lab Titanium (IV) oxide, target Purity, 99.9%
Plasma reactor Yamato PR301
n-octadecyltrichlorosilane
(OTS)
Aldrich 104817
Toluene Wako 204-01866
Tissue-culture dish (35 mm) Greiner 627160
Tissue-culture dish (60 mm) BD Falcon 353002
Type-IV collagen Nitta Gelatin Cellmatrix Type IV
D-PBS Gibco 14190-144
Dulbecco's modified Eagle's medium (DMEM) Gibco 11885-084
Fetal bovine serum Gibco 12483-020 Heat-inactivate and pass through a 0.22 mm filter before use
Horse serum Gibco 26050-088 Pass through a 0.22 mm filter before use
Penicillin-streptomycin (100x) Nacalai tesque 26253-84
7S nerve growth factor (NGF) Alomone Labs N-130
Bovine serum albumin (BSA) Sigma A2153
EDTA Dojindo N001 Stock solution in 0.5 M
TiO2 nanoparticle Tayca TKD-701

References

  1. Hughes, M. A., Brennan, P. M., Bunting, A. S., Shipston, M. J., Murray, A. F. Cell Patterning on Photolithographically Defined Parylene-C: SiO2 Substrates. J. Vis. Exp. (85), e50929 (2014).
  2. Kleinfeld, D., Kahler, K. H., Hockberger, P. E. Controlled Outgrowth of Dissociated Neurons on Patterned Substrates. J. Neurosci. 8, 4098-4120 (1988).
  3. Pensen, D., Heinz, W. F., Werbin, J. L., Hoh, J. H., Haviland, D. B. Electron Beam Patterning of Fibronectin Nanodots that Support Focal Adhesion Formation. Soft Matter. 3, 1280-1284 (2007).
  4. Tanii, T., et al. Application of Organosilane Monolayer Template to Quantitative Evaluation of Cancer Cell Adhesive Ability. Jpn. J. Appl. Phys. 50, 06GL01 (2011).
  5. Yamamoto, H., et al. In-Situ Guidance of Individual Neuronal Processes by Wet Femtosecond Laser Processing of Self-Assembled Monolayers. Appl. Phys. Lett. 99, 163701-1610 (2011).
  6. Yamamoto, H., et al. Differential Neurite Outgrowth is Required for Axon Specification by Cultured Hippocampal Neurons. J. Neurochem. 123, 904-910 (2012).
  7. Shen, K., Qi, J., Kam, L. C. Microcontact Printing of Proteins for Cell Biology. J. Vis. Exp. (22), e1065 (2008).
  8. Johnson, D. M., LaFranzo, N. A., Maurer, J. A. Creating Two-Dimensional Patterned Substrates for Protein and Cell Confinement. J. Vis. Exp. (55), e3164 (2011).
  9. Singhvi, R., et al. Engineering Cell Shape and Function. Science. 264, 696-698 (1126).
  10. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., Ingber, D. E. Geometric Control of Cell Life and Death. Science. 276, 1425-1428 (1997).
  11. Degot, S., et al. Improved Visualization and Quantitative Analysis of Drug Effects using Micropatterned Cells. J. Vis. Exp. (46), e2514 (2010).
  12. Nakanishi, J., et al. Photoactivation of a Substrate for Cell Adhesion under Standard Fluorescence Microscopes. J. Am. Chem. Soc. 126, 16314-16315 (2004).
  13. Kim, M., et al. Addressable Micropatterning of Multiple Proteins and Cells by Microscope Projection Photolithography Based on a Protein Friendly Photoresist. Langmuir. 26, 12112-12118 (2010).
  14. Deka, G., Okano, K., Kao, F. -. J. Dynamic Photopatterning of Cells In Situ by Q-Switched Neodymium-Doped Yttrium Ortho-Vanadate. Laser. J. Biomed. Opt. 19, 011012 (2014).
  15. Robertus, J., Browne, W. R., Feringa, B. L. Dynamic Control over Cell Adhesive Properties using Molecular-Based Surface Engineering Strategies. Chem. Soc. Rev. 39, 354-378 (2010).
  16. Choi, I., Yeo, W. -. S. Self-Assembled Monolayers with Dynamicity Stemming from (Bio)chemical Conversions: From Construction to Application. ChemPhysChem. 14, 55-69 (2013).
  17. Nakanishi, J. Switchable Substrates for Analyzing and Engineering Cellular Functions. Chem. Asian J. 9, 406-417 (2014).
  18. Yamamoto, H., et al. In Situ Modification of Cell-Culture Scaffolds by Photocatalytic Decomposition of Organosilane Monolayers. Biofabrication. 6, 035021 (2014).
  19. Sekine, K., Yamamoto, H., Kono, S., Ikeda, T., Kuroda, A., Tanii, T. Surface Modification of Cell Scaffold in Aqueous Solution using TiO2 Photocatalysis and Linker Protein L2 for Patterning Primary Neurons. e-J. Surf. Sci. Nanotech. 13, 213-218 (2015).
  20. Arima, Y., Iwata, H. Effects of Surface Functional Groups on Protein Adsorption and Subsequent Cell Adhesion using Self-Assembled Monolayers. J. Mater. Chem. 17, 4079-4087 (2007).
  21. Fujishima, A., Zhang, X., Tryk, D. A. TiO2 Photocatalysis and Related Surface Phenomena. Surf. Sci. Rep. 63, 515-582 (2008).
  22. Sigal, G. B., Mrksich, M., Whitesides, G. M. Effect of Surface Wettability on the Adsorption of Proteins and Detergents. J. Am. Chem. Soc. 120, 3464-3473 (1998).
  23. Zhang, X., et al. A Transparent and Photo-Patternable Superhydrophobic Film. Chem. Commun. 2007, 4949-4951 (1039).
  24. Kaech, S., Banker, G. Culturing Hippocampal Neurons. Nat. Protoc. 1, 2406-2415 (2006).

Play Video

Cite This Article
Yamamoto, H., Demura, T., Sekine, K., Kono, S., Niwano, M., Hirano-Iwata, A., Tanii, T. Photopatterning Proteins and Cells in Aqueous Environment Using TiO2 Photocatalysis. J. Vis. Exp. (104), e53045, doi:10.3791/53045 (2015).

View Video