Summary

减数分裂纺锤体评估在小鼠卵母细胞的siRNA介导沉默

Published: October 11, 2015
doi:

Summary

在这里,我们提出了一个协议,用于特定的siRNA介导的mRNA枯竭其次是免疫荧光分析来评估减数分裂纺锤体组装和组织在小鼠卵母细胞。这个协议是适合体外转录耗尽的和不同的主轴和/或微管组织中心相关因子中的卵母细胞的功能评价。

Abstract

Errors in chromosome segregation during meiotic division in gametes can lead to aneuploidy that is subsequently transmitted to the embryo upon fertilization. The resulting aneuploidy in developing embryos is recognized as a major cause of pregnancy loss and congenital birth defects such as Down’s syndrome. Accurate chromosome segregation is critically dependent on the formation of the microtubule spindle apparatus, yet this process remains poorly understood in mammalian oocytes. Intriguingly, meiotic spindle assembly differs from mitosis and is regulated, at least in part, by unique microtubule organizing centers (MTOCs). Assessment of MTOC-associated proteins can provide valuable insight into the regulatory mechanisms that govern meiotic spindle formation and organization. Here, we describe methods to isolate mouse oocytes and deplete MTOC-associated proteins using a siRNA-mediated approach to test function. In addition, we describe oocyte fixation and immunofluorescence analysis conditions to evaluate meiotic spindle formation and organization.

Introduction

减数分裂是发生在配子(卵子和精子),涉及两个连续的部门不干预DNA合成减数分裂我和减数分裂-II, 分别为1时分离的同源染色体和姊妹染色单体独特的分裂过程。在卵母细胞在减数分裂中染色体分离错误可能导致非整倍体,它是由胚胎在受精过程中继承。值得注意的是,非整倍体在发育中的胚胎的发生率的增加而前进产妇年龄和是先天性出生缺陷的主要原因,以及在妇女妊娠1,2-损失,因此,强调理解非整倍体的过程中减数分裂的分子基础的重要需求。

在细胞分裂,染色体分离是关键取决于微管主轴装置,并建立稳定的染色体微管相互作用进行正确连接到对面纺锤体组装极。重要的是,减数分裂纺锤体形成在哺乳动物卵母细胞不同于有丝分裂中的体细胞,并通过独特的微管组织中心(MTOCs)缺乏中心粒3,4-调节。必要的微核和组织必需的蛋白质定位于卵母细胞MTOCs,包括γ – 微管蛋白的催化微管组装。另外,粒周功能作为必要支架蛋白,其结合和锚γ微管蛋白以及其他因素在MTOCs 5。值得注意的是,我们的研究表明,主要的微管组织中心相关蛋白的耗尽扰乱减数分裂纺锤体组织,并导致在卵母细胞的染色体分离的错误,这是不充分的主轴组件的检查点(SAC)6,7-解决。因此,在主轴的稳定性的缺陷,即不会触发减数分裂阻滞,姿势在促进非整倍体一个显著风险。尽管在纺锤体组装和组织下,卵母细胞微管组织中心PROT的重要作用EIN组成和功能仍然知之甚少。

测试特定的目标蛋白质的功能在哺乳动物卵母细胞是具有挑战性的,因为细胞变得转录静止恢复减数分裂8,9前不久。因此,排卵前的卵母细胞依靠产妇基因店恢复减数分裂和支持减数分裂和受精10,11后的第一次卵裂的分裂。 RNA干扰(RNAi)介导的mRNA转录物在哺乳动物卵母细胞退化的功效是公认的,并在减数分裂成熟招募翻译母系RNA是特别适合于siRNA的靶向12-14中 。因此,短干扰RNA显微注射(的siRNA)为卵母细胞提供了一个有价值的方法来耗尽目标基因进行功能测试。

在这里,我们描述了小鼠卵母细胞和具体的transcri siRNA-介导的耗尽的分离方法点测试的必要微管组织中心相关蛋白的功能,粒周。此外,我们描述免疫荧光分析条件来评估减数分裂纺锤体形成在卵母细胞。

Protocol

该协议被批准的机构动物护理和使用委员会(IACUC)在佐治亚大学。 1.准备对卵母细胞培养,购买或新鲜制备最低必需培养基(MEM)和补充用3毫克/毫升牛血清白蛋白(BSA),如表1中概述 。将聚苯乙烯瓶上的装载平衡(皮重至零)。加入所有试剂,除了BSA,为了带来与MQ水最终体积(重量)总共250克。然后加入BSA,让溶解,过滤消毒。 注…

Representative Results

siRNA的显微注射提供了一种有效的方法对mRNA降解和随后的蛋白耗竭的卵母细胞,从而使不同的目标因子在体外的高效率和高特异性的功能测试。随后,免疫荧光被用于特定的表型分析以及验证蛋白耗竭的siRNA注射卵母细胞。在当前的例子,用DAPI个别的卵母细胞的抗微管蛋白和抗粒周蛋白抗体荧光标记一起启用:粒周枯竭(i)认可,以及(ii)以控制这两个染色质和减数分裂纺锤体结构进行…

Discussion

尽管有多种方法外源核酸转移进入体细胞,例如电穿孔和转染,显微注射是用于递送RNA分子的转录成静止小鼠卵母细胞的最佳方法。目前的协议提供了一种有效的方法用于体外耗尽特异mRNAs,使不同的主轴和/或微管组织中心相关因子中的卵母细胞的功能测试。这种做法会导致效率的成绩单枯竭和高度的适应性。虽然的siRNA被用于特异性靶向PCNT转录,类似的条件,可以采用靶向感兴趣?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This research was supported in part by the University of Georgia, and a grant (HD071330) from the National Institutes of Health to MMV.

Materials

Reagents
Pregnant Mare's Serum Gonadotropin (PMSG) EMD Biosciences 367222
Minimal Essential Medium (MEM) *Recipe outlined in Table 1
Earle's Balanced Salt Solution (10x) Sigma E-7510
Sodium Bicarbonate Sigma S-5761
Pyruvic Acid, sodium salt  Sigma P-5280
Penicillin G, potassium salt  Sigma P-7794
Streptomycin Sulfate  Sigma S-9137
L-Glutamine  Sigma G-8540
EDTA, disodium salt dihydrate  Sigma E-4884
Essential Amino Acids (50x) Gibco  11130-051
MEM Vitamin Mixture (100x) Sigma M-6895
Phenol Red solution Sigma P-0290
Bovine Serum Albumin (BSA) Sigma A1470
Milrinone Sigma M4659
Fetal Bovine Serum (FBS) Hyclone SH30070.01
EmbryoMax M2 Media with Hepes EMD Millipore MR-015-D
siRNAs targeting Pericentrin Qiagen GS18541
Negative control siRNAs  Qiagen SI03650318
Paraformaldehyde (16% solution) Electron Microscopy Sciences 15710
Triton-X Sigma T-8787
Phosphate Buffered Saline (PBS) Hyclone SH30028.02
Anti-Pericentrin (rabbit) Covance PRB-432C
Anti-acetylated a-tubulin (mouse) Sigma T-6793
Goat anti-rabbbit Alexa Fluor 488 Invitrogen A-21430
Goat anti -mouse Alexa Fluor 555 Invitrogen A-11017
Major Equipment
Stereomicroscope (SMZ 800) Nikon
Upright Fluorescent Microscope Leica Microsystems
Inverted Microscope Nikon 
Femtojet Micro-injections System Eppenforf
Micro manipulators Eppendorf
Micro-injection needles (femtotips) Eppendorf 930000035
Holding pipettes (VacuTip) Eppendorf 930001015
Plasticware
35mm culture dishes Corning Life Sciences 351008
4-well plates Thermo Scientific 176740
96 well plates Corning Life Sciences 3367
0.45 mm CA Filter System Corning Life Sciences 430768

References

  1. Nagaoka, S. I., Hassold, T. J., Hunt, P. A. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet. 13 (7), 493-504 (2012).
  2. Hassold, T. J., Hunt, P. A. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2 (4), 280-291 (2001).
  3. Szollosi, D., Calarco, P., Donahue, R. P. Absence of Centrioles in the First and Second Meiotic Spindles of Mouse Oocytes. J Cell Sci. 11 (2), 521-541 (1972).
  4. Manandhar, G., Schatten, H., Sutovsky, P. Centrosome Reduction During Gametogenesis and Its Significance. Biol Reprod. 72 (1), 2-13 (2005).
  5. Zimmerman, W. C., Sillibourne, J., Rosa, J., Doxsey, S. J. Mitosis-specific anchoring of gamma tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol Biol Cell. 15 (8), 3642-3647 (2004).
  6. Ma, W., Baumann, C., Viveiros, M. M. NEDD1 is crucial for meiotic spindle stabilty and accurate chromosome segregation in mammalian oocytes. Dev Biol. 339 (439-450), (2010).
  7. Ma, W., Viveiros, M. M. Depletion of pericentrin in mouse oocytes disrupts microtubule organizing center function and meiotic spindle organization. Mol Reprod Dev. 81 (11), 1019-1029 (2014).
  8. Bouniol-Baly, C., et al. Differential Transcriptional Activity Associated with Chromatin Configuration in Fully Grown Mouse Germinal Vesicle Oocytes. Biol Reprod. 60 (3), 580-587 (1999).
  9. De La Fuente, R., Eppig, J. J. Transcriptional Activity of the Mouse Oocyte Genome: Companion Granulosa Cells Modulate Transcription and Chromatin Remodeling. Dev Biol. 229 (1), 224-236 (2001).
  10. Hodgman, R., Tay, J., Mendez, R., Richter, J. D. CPEB phosphorylation and cytoplasmic polyadenylation are catalyzed by the kinase IAK1/Eg2 in maturing mouse oocytes. Development. 128 (14), 2815-2822 (2001).
  11. De La Fuente, R. Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes. Dev Biol. 292 (1), 1-12 (2006).
  12. Wianny, F., Zernicka-Goetz, M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol. , 270-275 (2000).
  13. Svoboda, P., Stein, P., Hayashi, H., Schultz, R. M. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development. 127 (19), 4147-4156 (2000).
  14. Svoboda, P. Renaissance of mammalian endogenous RNAi. FEBS Letters. 588 (15), 2550-2556 (1016).
  15. Behringer, R., Gertsenstein, M., Nagy, K., Nagy, A. . Manipulating the Mouse Embryo: A Laboratory Manual. , (2014).
check_url/cn/53586?article_type=t

Play Video

Cite This Article
Baumann, C., Viveiros, M. M. Meiotic Spindle Assessment in Mouse Oocytes by siRNA-mediated Silencing. J. Vis. Exp. (104), e53586, doi:10.3791/53586 (2015).

View Video