Summary

方法确定HCN1和TRIP8b之间蛋白 - 蛋白相互作用的小分子抑制剂

Published: November 11, 2016
doi:

Summary

HCN通道和其辅助亚基之间的相互作用已被确定为在抑郁症的治疗靶点。这里,用于识别这种蛋白质 – 蛋白质相互作用的小分子抑制剂荧光基于偏振的方法,提出。

Abstract

超极化激活环核苷酸门控(HCN)频道整个大脑,在那里它们起作用来调节神经元的兴奋遍在表达。海马CA1区锥体细胞这些通道的亚细胞分布由三十四肽含有重复-Rab8b相互作用蛋白(TRIP8b),辅助亚基调节。 HCN的遗传敲除孔形成亚基或TRIP8b,既导致增加抗抑郁样行为,这表明限制HCN通道的功能可以是作为用于抑郁症(MDD)的治疗是有用的。尽管显著治疗意义,HCN通道也都在心脏,在那里它们调节节律性表达。规避与阻断心脏HCN通道相关联的脱靶的问题,我们的实验室最近提出靶向为了专门破坏HCN通道功能在大脑HCN和TRIP8b之间的蛋白质 – 蛋白质相互作用。TRIP8b结合HCN孔形成在两个不同的相互作用位点亚基,尽管这里的重点是TRIP8b的三十四肽重复(TPR)结构域和HCN1的C-末端尾部之间的相互作用。在这个协议中,一种方法的用于纯化TRIP8b并执行高通量筛选,以鉴定HCN和TRIP8b之间的相互作用的小分子抑制剂的扩展的说明中,进行说明。用于高通量筛选的方法,利用荧光偏振(FP)为基础的测定以监测大TRIP8b片段荧光团标记十一结合氨基酸对应于HCN1 C端尾酸肽。基于在发射的光的偏振的变化,以确定该方法允许'命中'的化合物。然后进行验证试验,以确保'打'的化合物不是人为的。

Introduction

超极化激活环核苷酸门控(HCN)频道在心脏和中枢神经系统,其中它们起到调节膜兴奋1中起重要作用表示。 HCN通道有牵连抑郁症(MDD)2,这导致几个组提议限制性HCN通道功能的药理学可以有效地作为一种新型治疗MDD 3的发病机制。然而,直接针对HCN通道是因为它们在心脏动作电位4重要的作用并不可行。伊伐布雷定,唯一的FDA批准的HCN通道拮抗剂,用于心脏衰竭,以产生一个心动过缓作用5的治疗。因此,有必要为限制HCN通道在中枢神经系统专门功能的药理学试剂。

Rab8b相互作用蛋白(TRIP8b)三十四肽重复含,是一种大脑特定FIC HCN通道控制HCN通道6,7的表面表达和定位的辅助亚基。 TRIP8b基因敲除导致而不影响心脏HCN 8表达降低大脑HCN通道7。有趣的是,TRIP8b基因敲除小鼠花强迫游泳任务,尾吊任务7,两种常用的筛选试验的抗抑郁疗效9-11时间少动。这些结果表明,而不是直接靶向HCN通道与HCN通道功能的小分子拮抗剂,扰乱TRIP8b和HCN之间的相互作用可以是足以产生抗抑郁样行为。

TRIP8b结合氰化氢在两个不同的结合位点。 HCN的环核苷酸结合结构域(CNBD)与TRIP8b位于N端的到的TRIP8b 12,13的TPR结构域的保守结构域相互作用。虽然所涉及在此CNBD的残相互作用已经映射14,即所涉及的TRIP8b的区域还没有被缩小之外的80个氨基酸的片段13。 TRIP8b的三十四肽重复(TPR)结构域和HCN的C末端三肽('SNL'在HCN1,HCN2和HCN4,而是“ANM”在HCN3)3,12之间发生的第二交互作用。本C尾相互作用的最近解析晶体结构15揭示实质结构相似性的过氧化物酶体导入受体之间的相互作用,peroxin 5(PEX5),和其相互作用伙伴,含有1型的过氧化物酶体靶向序列(PTS1)16。

虽然两者相互作用位点所必需的HCN通道功能,TRIP8b的TPR结构域和HCN1的C-末端三肽之间的相互作用作为主导结合位点和调节HCN表面表达。因此,这种相互作用被选为本研究中的定位点。为原稿,当提及到TRIP8b和HCN之间的相互作用制成的其余部分,它是这种相互作用正在提及。这种相互作用是由TRIP8b的对应于含有它的保守C端结合的HCN的C-末端尾部(残基的第1a-4同种型TRIP8b的241-602)3所需的TPR结构域的高可溶性片段概括。

为了开发高通量筛选,以确定能够破坏这种互动的小分子,荧光偏振(FP)为基础的测定采用17。荧光偏振是基于与偏振光,并测量发射的荧光18的偏振度的荧光团标记的配体的激励。在结合伴侣的存在,所述荧光配体的旋转运动被约束和偏振光发射19。在没有一个结合伴侣,T他的配位体的旋转运动导致去极化光的发射。

在封闭的协议,提出了N末端标记(的6xHis)TRIP8b使用镍氮基三乙酸(的Ni-NTA)珠粒纯化(241-602)的方法。一个类似的协议是用来净化该协议的步骤7中使用的谷胱甘肽-S-转移酶(GST)-taggedçHCN1端40个氨基酸(HCN1 C40)。出于空间考虑,省略该步骤的详细描述。

在步骤2到协议的7,高通量筛选工作流提出了( 见图1)。蛋白质-蛋白质相互作用的高通量筛选出了名的困难的目标,并建议读者去寻找关于这个专题的20个额外的资源。

步骤2和步骤3表征纯化TRIP8b(241-602) 的体外构建亲和力FO岭异硫氰酸荧光素(FITC)-tagged对应HCN1(HCN1 FITC)的C-末端尾部11个氨基酸的肽。基于所述TRIP8b-HCN络合物15的晶体结构该11氨基酸片段是足以产生与TRIP8b(241-602)的结合。在步骤2中,相互作用的K个d由滴定TRIP8b(241-602)插入HCN1 FITC的固定浓度测定。在步骤3,在步骤2中使用的氰化氢肽的未标记的版本滴定到两个TRIP8b(241-602)和HCN1 FITC的固定浓度如果FITC标记具有结合干扰检查。这些实验都是在选择高通量筛选使用TRIP8b(241-602)和HCN1 FITC的适当浓度是必不可少的。

高通量筛选的前提是能够扰乱TRIP8b(241-602)和HCN1 FITC之间的相互作用将产生一个分解的小分子rease在偏振光。在步骤4中,测定的Z因子计算21 TRIP8b(241-602)和HCN1 FITC的给定浓度,以确保该测定是适当的高通量筛选(步骤5)。步骤6和7是验证实验,以确认在初级高通量筛选中鉴定的命中通过破坏TRIP8b(241-602)和HCN1 FITC之间,而不是通过非特异性机制的交互作用。在步骤6中,carboxytetramethylrhodamine(TAMRA)标记的HCN1肽(HCN1 TAMRA)是在其它方面相同的荧光偏振测定法用于筛选危及使用FITC标记的FP试验的荧光化合物。步骤7使用较大HCN1 C端片段(HCN1 C40)并采用基于珠子的亲近测定,这是基于从供体珠子单线态氧的“隧道”由相互作用的蛋白质带到彼此接近的受体珠22

Protocol

1. TRIP8b(241-602)蛋白的纯化变换含TRIP8b(241-602)中的细菌蛋白表达载体pGS21 3到感受态质粒大肠杆菌用于根据制造商的说明蛋白的表达。板300微升上卢里亚肉汤(LB)文化 – 琼脂用5微克/毫升氯霉素和氨苄西林。孵育在37℃的板16小时。 第二天,挑取单个菌落接种50毫升LB用50微克/毫升氯霉素和氨苄西林。孵育在37℃下培养16小时(振荡)。 50ml培养添加到1…

Representative Results

以避免与我们先前的出版物的版权问题,一个TAMRA标记的探针HCN1 TAMRA用于生成图2和3。需要注意的是,这种替代并没有使在结果有明显的差别,并且这些协议是相同的上述与HCN1 FITC。来评估与HCN1 TAMRA,TRIP8b(241-602)的相互作用滴定成使用在步骤2( 图2)中概述的协议HCN1 TAMRA的固定浓度。接着,进行在…

Discussion

因为其在MDD 24的治疗目标电位的,出现了在拮抗HCN通道功能在中枢神经系统4药理学方法相当大的兴趣。然而,这些努力已经被HCN通道在心脏起搏中的重要作用和心律不齐25的风险停滞不前。我们推断,破坏HCN和其大脑特定辅助亚基,TRIP8b 8之间的相互作用可能是足以产生,而不会影响心脏HCN通道3抗抑郁样作用。这一假说是由缺乏的小鼠表现出TRIP8b抗抑郁样…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by National Institutes of Health Grant R21MH104471 and R01MH106511 (D.M.C.), Brain Research Foundation SG 2012-01 (D.M.C.), Northwestern University Clinical and Translational Sciences Institute 8UL1TR000150 (Y.H.), Chicago Biomedical Consortium HTS-004 (Y.H. and D.M.C.), and National Institutes of Health Grant 2T32MH067564 (K.L.). A part of this work was performed by the Northwestern University Medicinal and Synthetic Chemistry Core (ChemCore) at the Center for Molecular Innovation and Drug Discovery (CMIDD), which is funded by the Chicago Biomedical Consortium with support from the Searle Funds at the Chicago Community Trust and Cancer Center Support Grant P30 CA060553 from the National Cancer Institute awarded to the Robert H. Lurie Comprehensive Cancer Center. The high throughput screen work was performed in the High Throughput Analysis Laboratory which is also a core facility of the Robert H. Lurie Comprehensive Cancer Center.

Materials

Ni-NTA agarose  Qiagen 30210
Dialysis cassette  ThermoFisher 66456
Isopropyl b-D-1-thiogalactopyranoside  Sigma-Aldrich I5502-1G
384 Well Black plate  Corning 3820
Proxiplate  Perkin-Elmer  6008289
Anti-GST Acceptor beads  Perkin-Elmer  6760603C
NiChelate Perkin-Elmer  AS101D
pGS21-a Genscript SD0121
PMSF Sigma-Aldrich 10837091001
Coomassie Kit ThermoFisher 23200
Protein concentrator ThermoFisher 88527
Perkin Elmer Enspire Multimode Plate reader Perkin-Elmer  #2300-001M
BL21 (DE3) Competent Cells Agilent 200131

References

  1. Biel, M., Wahl-Schott, C., Michalakis, S., Zong, X. Hyperpolarization-activated cation channels: from genes to function. Physiol Rev. 89 (3), 847-885 (2009).
  2. Shah, M. M. HCN1 channels: a new therapeutic target for depressive disorders?. Sci Signal. 5 (244), pe44 (2012).
  3. Han, Y., et al. Identification of Small-Molecule Inhibitors of Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels. J Biomol Screen. 20 (9), 1124-1131 (2015).
  4. Postea, O., Biel, M. Exploring HCN channels as novel drug targets. Nat Rev Drug Discov. 10 (12), (2011).
  5. Stieber, J., Wieland, K., Stöckl, G., Ludwig, A., Hofmann, F. Bradycardic and proarrhythmic properties of sinus node inhibitors. Mol Pharmacol. 69 (4), 1328-1337 (2006).
  6. Santoro, B., Wainger, B. J., Siegelbaum, S. A. Regulation of HCN channel surface expression by a novel C-terminal protein-protein interaction. J Neurosci. 24 (47), 10750-10762 (2004).
  7. Lewis, A. S., et al. Deletion of the hyperpolarization-activated cyclic nucleotide-gated channel auxiliary subunit TRIP8b impairs hippocampal Ih localization and function and promotes antidepressant behavior in mice. J Neurosci. 31 (20), 7424-7440 (2011).
  8. Heuermann, R. J., et al. Reduction of thalamic and cortical Ih by deletion of TRIP8b produces a mouse model of human absence epilepsy. Neurobiol Dis. 85, 81-92 (2016).
  9. Steru, L., Chermat, R., Thierry, B., Simon, P. The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology. 85 (3), 367-370 (1985).
  10. Petit-Demouliere, B., Chenu, F., Bourin, M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology. 177 (3), 245-255 (2004).
  11. Cryan, J. F., Mombereau, C., Vassout, A. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 29 (4-5), 571-625 (2005).
  12. Han, Y., et al. Trafficking and gating of hyperpolarization-activated cyclic nucleotide-gated channels are regulated by interaction with tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) and cyclic AMP at distinct sites. J Biol Chem. 286 (23), 20823-20834 (2011).
  13. Hu, L., Santoro, B., Saponaro, A., Liu, H., Moroni, A., Siegelbaum, S. Binding of the auxiliary subunit TRIP8b to HCN channels shifts the mode of action of cAMP. J Gen Physiol. 142 (6), 599-612 (2013).
  14. Saponaro, A., et al. Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function. Proc Natl Acad Sci U S A. 111 (40), 14577-14582 (2014).
  15. Bankston, J. R., Camp, S. S., DiMaio, F., Lewis, A. S., Chetkovich, D. M., Zagotta, W. N. Structure and stoichiometry of an accessory subunit TRIP8b interaction with hyperpolarization-activated cyclic nucleotide-gated channels. Proc Natl Acad Sci U S A. 109 (20), 7899-7904 (2012).
  16. Gatto, G. J., Geisbrecht, B. V., Gould, S. J., Berg, J. M. Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat Struct Biol. 7 (12), 1091-1095 (2000).
  17. Owicki, J. C. Fluorescence polarization and anisotropy in high throughput screening: perspectives and primer. J Biomol Screen. 5 (5), 297-306 (2000).
  18. Smith, D. S., Eremin, S. A. Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Anal Bioanal Chem. 391 (5), 1499-1507 (2008).
  19. Roehrl, M. H. A., Wang, J. Y., Wagner, G. A general framework for development and data analysis of competitive high-throughput screens for small-molecule inhibitors of protein-protein interactions by fluorescence polarization. 生物化学. 43 (51), 16056-16066 (2004).
  20. Arkin, M. R., Wells, J. A. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov. 3 (4), 301-317 (2004).
  21. Zhang, J., Chung, T., Oldenburg, K. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen. 4 (2), 67-73 (1999).
  22. Eglen, R. M., et al. The use of AlphaScreen technology in HTS: current status. Curr Cheml Genomics. 1 (1), 2-10 (2008).
  23. Lehninger, A. L., Nelson, D. L., Cox, M. M. . Lehninger Principles of Biochemistry. , (2000).
  24. Kim, C. S., Chang, P. Y., Johnston, D. Enhancement of dorsal hippocampal activity by knockdown of HCN1 channels leads to anxiolytic- and antidepressant-like behaviors. Neuron. 75 (3), 503-516 (2012).
  25. Wahl-Schott, C., Biel, M. HCN channels: structure, cellular regulation and physiological function. Cell Mol Life Sci. 66 (3), 470-494 (2009).
  26. DeBerg, H. A., Bankston, J. R., Rosenbaum, J. C., Brzovic, P. S., Zagotta, W. N., Stoll, S. Structural Mechanism for the Regulation of HCN Ion Channels by the Accessory Protein TRIP8b. Structure. 23 (4), 734-744 (2015).
  27. Weiss, J. N. The Hill equation revisited: uses and misuses. FASEB J. 11 (11), 835-841 (1997).
  28. Prinz, H. Hill coefficients, dose-response curves and allosteric mechanisms. J Chem Biol. 3 (1), 37-44 (2009).
  29. Pollard, T. D. A Guide to Simple and Informative Binding Assays. Mol Biol Cell. 21 (23), 4061-4067 (2010).
  30. Rossi, A. M., Taylor, C. W. Analysis of protein-ligand interactions by fluorescence polarization. Nat Protoc. 6 (3), (2011).
  31. Ryan, A. J., Gray, N. M., Lowe, P. N., Chung, C. -. W. Effect of Detergent on “Promiscuous” Inhibitors. J Med Chem. 46 (16), 3448-3451 (2003).
  32. McGovern, S. L., Caselli, E., Grigorieff, N., Shoichet, B. K. A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem. 45 (8), 1712-1722 (2002).
  33. Hertzberg, R. P., Pope, A. J. High-throughput screening: new technology for the 21st century. Curr Opin Chem Biol. 4 (4), 445-451 (2000).
  34. Sundberg, S. A. High-throughput and ultra-high-throughput screening: solution-and cell-based approaches. Curr Opin Biotechnol. 11 (1), (2000).

Play Video

Cite This Article
Han, Y., Lyman, K. A., Clutter, M., Schiltz, G. E., Ismail, Q., Cheng, X., Luan, C., Chetkovich, D. M. Method for Identifying Small Molecule Inhibitors of the Protein-protein Interaction Between HCN1 and TRIP8b. J. Vis. Exp. (117), e54540, doi:10.3791/54540 (2016).

View Video