Summary

通过从光响应聚合物纳米载体的siRNA释放的时空控制预测基因沉默

Published: July 21, 2017
doi:

Summary

我们提出一种新的方法,使用光响应嵌段共聚物更有效的时空控制基因沉默,没有可检测的脱靶效应。此外,可以使用简单的siRNA释放测定法和简单的动力学建模来预测基因表达的变化。

Abstract

需要新的材料和方法来更好地控制需要精确调节基因活性的广泛应用的核酸的结合释放。特别地,具有改进的基因表达时空控制的新型刺激响应材料将在药物发现和再生医学技术中解锁可翻译平台。此外,增强的控制从材料释放核酸的能力将使得能够开发精简的方法来先验地预测纳米载体功效,从而加速输送载体的筛选。在这里,我们提出了一种通过模块化光响应纳米载体系统预测基因沉默效率和实现基因表达的时空控制的方案。小干扰RNA(siRNA)与mPEG- b-聚(甲基丙烯酸5-(3-(氨基)丙氧基)-2-硝基苄酯)(mPEG- b- P(APNBMA))聚合物与聚rm稳定的纳米载体,可以用光控制,以促进可调谐,开/关siRNA释放。我们概述了使用荧光相关光谱和凝胶电泳的两种互补测定法,用于从模拟细胞内环境的溶液中精确定量siRNA释放。从这些测定中获得的信息被并入到简单的RNA干扰(RNAi)动力学模型中,以预测对各种光刺激条件的动态沉默反应。反过来,这些优化的照射条件允许改进用于时空控制基因沉默的新方案。该方法可以产生具有细胞至细胞分辨率的基因表达中的细胞模式,并且不产生可检测到的脱靶效应。总之,我们的方法提供了一种易于使用的方法来预测基因表达的动态变化并精确控制空间和时间的siRNA活性。这组测定可以容易地适应于测试各种各样的她的刺激反应系统,以解决与生物医学研究和医学中众多应用相关的关键挑战。

Introduction

小干扰RNA(siRNA)通过催化RNAi途径介导转录后基因沉默,该途径对于几乎任何靶基因1具有高度特异性,有效性和可裁剪性。这些有希望的特性已启用siRNA治疗在众多疾病,包括转移性黑素瘤和血友病2,3治疗人类临床试验来推进。然而,重大的交付问题仍然存在,妨碍了翻译4 。特别是,送货车辆必须保持稳定和保护的siRNA从细胞外降解,但也释放有效载荷进入细胞质5。此外,许多RNAi应用需要改进的方法来调节空间和时间6中的基因沉默,这将减少siRNA治疗药物7中的副作用,并使得能够转化应用范围从药物发现的细胞芯片8到再生支架中细胞反应调节的应用9 。这些挑战强调需要新的材料和方法来更好地控制siRNA纳米载体中的结合释放。

控制siRNA释放和增强时空调节的最有希望的策略之一是使用刺激响应材料10 。例如,响应于改变的氧化还原电位或pH或施加的磁场,超声波或光11 ,已经将各种各样的生物材料设计成具有可变核酸结合亲和力。尽管许多这些系统证明改进了对核酸活性的控制,但由于其瞬时瞬时响应,精确的空间分辨率和易调节性,使用光作为触发器是特别有利的<sup class =“xref”> 12。此外,光敏技术调节基因表达的潜力已经由最先进的诱导型启动子和光遗传调控系统证明;然而,这些系统从许多挑战包括有限的能力来调节内源基因,安全问题,如免疫原性,以及在提供多部件组件13,14,15遭受困难。光响应siRNA的纳米载体是非常适合克服这些缺点,并提供一种更简单,更可靠的方法来时空调节基因表达16,17,18。不幸的是,准确预测所得到的蛋白质敲低反应的方法仍然难以捉摸。

一个关键的挑战是定量评估siRNA释放罕见19,20,甚至当执行这些评估,它们还没有被耦合到的siRNA /蛋白质周转动力学分析。 siRNA的释放量及其持久性/寿命都是所得基因沉默动力学的重要决定因素;因此,缺乏这样的信息是一个重大的断开,排除RNAi 21中剂量反应的准确预测。解决这一挑战将加快制定纳米载体中适当的结构 – 功能关系,并更好地告知生物材料设计22 。此外,这种方法将能够开发出更有效的siRNA给药方案。在试图了解动态响应沉默,几组已经研究RNAi的23,24,25的数学模型。这些框架是成功地提供对siRNA介导的基因表达变化的认识并鉴定速率限制步骤26 。然而,这些模型仅被应用于不能控制siRNA释放的商业基因递送系统( 例如 ,Lipofectamine和聚乙烯亚胺(PEI)),并且模型的复杂性严重限制了其实用性27 。这些缺点突显出了能够精确调整siRNA释放的新材料与流线型易于使用的预测动力学模型的未满足需求。

我们的方法通过将光敏纳米载体平台与耦合方法整合来量化免费的siRNA和模型RNAi动力学来解决所有这些挑战。特别地,我们的平台的精确控制的siRNA释放28通过两种互补方法进行监测,用于精确定量封装对比结合siRNA。这些测定的实验数据被输入到一个简单的动力学模型,以预测基因沉默效率先验 29 。最后,纳米载体的开/关性质容易被利用以在细胞长度尺度上产生具有空间控制的基因表达中的细胞模式。因此,该方法提供了一种易于适应的方法来控制和预测将受益于细胞行为的时空调节的各种应用中的基因沉默。

Protocol

1. siRNA纳米载体的制备 在pH 6.0下,以等体积稀释于20mM 4-(2-羟乙基)哌嗪-1-乙磺酸(HEPES)缓冲液中制备siRNA和mPEG- b- P(APNBMA)的单独溶液。 加入浓度为32μg/ mL至20 mM HEPES溶液的siRNA。 注意:siRNA是非靶向的通用阴性对照序列;然而,siRNA可以设计成靶向任何感兴趣的基因。 将mPEG- b- P(APNBMA)聚合物溶解到20mM HEPES溶液中。加入适量的mPEG- b- …

Representative Results

在制备纳米载体之后,进行siRNA释放测定以通知用于体外转染的照射条件。应用各种剂量的光以确定被释放的siRNA的百分比。第一个测定法使用凝胶电泳将游离的siRNA分子与仍然与聚合物复合/相关的siRNA分子分离。没有用光处理的纳米载体保持稳定并且不释放任何siRNA。随着照射时间的延长,游离siRNA带的荧光强度增加。使用图像分析软件对带强度的定量表明,在20分?…

Discussion

该方法中有几个步骤特别重要。当配制纳米载体,组分添加和混合速度的顺序是影响功效39的两个重要参数。该方案要求在涡旋下将阳离子组分mPEG- b- P(APNBMA)以滴加方式加入到阴离子组分siRNA中。取决于总制剂体积,该混合过程需要3-6秒。为了测试纳米载体是否正确形成,使用诸如动态光散射的技术来测量尺寸分布。所述的mPEG-b -P(APNBMA)/ siRNA的纳米载体与4的N /…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢美国国家卫生研究院国家卫生研究院(NIH)通过授权号P20GM103541的机构发展奖(IDeA)以及拨款号P20GM10344615提供财政支持。本文中的声明不反映NIH的观点。我们还通过生物科学高级技术中心(Bioscience CAT)奖(12A00448),承认特拉华生物技术研究所(DBI)和特拉华州经济发展办公室(DEDO)的财务支持。

Materials

siRNA Sigma-Aldrich SIC001 non-targeted, universal negative control
mPEG-b-P(APNBMA) synthesized in our lab N/A photo-responsive polymer
HEPES Fisher Scientific BP310-100
sodium dodecyl sulfate  Sigma-Aldrich 436143
rubber gasket McMaster-Carr 3788T21 0.5 mL thick
UV laser  Excelitas Technologies Omnicure S2000 collimating lens and 365 nm filter used
agarose Fisher Scientific BP160-100
ethidium bromide Fisher Scientific BP1302-10
siRNA labelled with Dy547 GE Healthcare Dharmacon, Inc. custom order fluorophore conjugated to 5’ end of sense strand
microscope slide Fisher Scientific 12-550-A3 pre-cleaned glass
Secure-Seal Spacer Life Technologies S24735 double-sided adhesive
LSM 780  Carl Zeiss N/A confocal microscope
ZEN 2010 Carl Zeiss N/A FCS analysis software
MATLAB MathWorks N/A programming language
NIH/3T3 cells  ATCC ATCC CRL-1658
DMEM Mediatech 10-013-CV growth media
fetal bovine serum Mediatech 35-011-CV heat-inactivated
penicillin-streptomycin Mediatech  30-002-CI
6-well plates Fisher Scientific 08-772-1B
Opti-MEM Life Technologies 11058021 transfection media

References

  1. Forbes, D. C., Peppas, N. A. Oral delivery of small RNA and DNA. J Control Release. 162 (2), 438-445 (2012).
  2. Davis, M. E., et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 464 (7291), 1067-1070 (2010).
  3. Bouchie, A. Companies in footrace to deliver RNAi. Nat Biotechnol. 30 (12), 1154-1157 (2012).
  4. Burke, P. A., Pun, S. H., Reineke, T. M. Advancing Polymeric Delivery Systems Amidst a Nucleic Acid Therapy Renaissance. ACS Macro Lett. 2 (10), 928-934 (2013).
  5. Gooding, M., Browne, L. P., Quinteiro, F. M., Selwood, D. L. siRNA Delivery: From Lipids to Cell-penetrating Peptides and Their Mimics. Chem Biol Drug Des. 80 (6), 787-809 (2012).
  6. Motta-Mena, L. B., et al. An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat Chem Biol. 10 (3), 196-202 (2014).
  7. Wang, X., Chen, X., Yang, Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat Methods. 9 (3), 266-269 (2012).
  8. Ziauddin, J., Sabatini, D. M. Microarrays of cells expressing defined cDNAs. Nature. 411 (6833), 107-110 (2001).
  9. Saltzman, W. M., Olbricht, W. L. Building drug delivery into tissue engineering. Nat Rev Drug Discov. 1 (3), 177-186 (2002).
  10. Mura, S., Nicolas, J., Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 12 (11), 991-1003 (2013).
  11. Shim, M. S., Kwon, Y. J. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv Drug Delivery Rev. 64 (11), 1046-1058 (2012).
  12. Kelley, E. G., Albert, J. N. L., Sullivan, M. O., Epps, T. H. Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chem Soc Rev. 42 (17), 7057-7071 (2013).
  13. Weber, W., Fussenegger, M. Emerging biomedical applications of synthetic biology. Nat Rev Genet. 13 (1), 21-35 (2012).
  14. Konermann, S., et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature. 500 (7463), 472-476 (2013).
  15. Shimizu-Sato, S., Huq, E., Tepperman, J. M., Quail, P. H. A light-switchable gene promoter system. Nat Biotechnol. 20 (10), 1041-1044 (2002).
  16. Huschka, R., et al. Gene Silencing by Gold Nanoshell-Mediated Delivery and Laser-Triggered Release of Antisense Oligonucleotide and siRNA. ACS Nano. 6 (9), 7681-7691 (2012).
  17. Li, H. -. J., Wang, H. -. X., Sun, C. -. Y., Du, J. -. Z., Wang, J. Shell-detachable nanoparticles based on a light-responsive amphiphile for enhanced siRNA delivery. R Soc Chem Adv. 4 (4), 1961-1964 (2014).
  18. Braun, G. B., et al. Laser-Activated Gene Silencing via Gold Nanoshell-siRNA Conjugates. ACS Nano. 3 (7), 2007-2015 (2009).
  19. Gilleron, J., et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. 31 (7), 638-646 (2013).
  20. Wittrup, A., et al. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat Biotechnol. 33 (8), 870-876 (2015).
  21. Roth, C. M. Quantitative measurements and rational materials design for intracellular delivery of oligonucleotides. Biotechnol Prog. 24 (1), 23-28 (2008).
  22. Mao, S., et al. Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes. Bioconjugate Chem. 17 (5), 1209-1218 (2006).
  23. Raab, R. M., Stephanopoulos, G. Dynamics of gene silencing by RNA interference. Biotechnol Bioeng. 88 (1), 121-132 (2004).
  24. Cuccato, G., et al. Modeling RNA interference in mammalian cells. BMC Systems Biology. 5, 1 (2011).
  25. Varga, C. M., Hong, K., Lauffenburger, D. A. Quantitative analysis of synthetic gene delivery vector design properties. Mol Ther. 4 (5), 438-446 (2001).
  26. Chen, H. H., et al. Quantitative comparison of intracellular unpacking kinetics of polyplexes by a model constructed from quantum Dot-FRET. Mol Ther. 16 (2), 324-332 (2008).
  27. Bartlett, D. W., Davis, M. E. Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res. 34 (1), 322-333 (2006).
  28. Foster, A. A., Greco, C. T., Green, M. D., Epps, T. H., Sullivan, M. O. Light-Mediated Activation of siRNA Release in Diblock Copolymer Assemblies for Controlled Gene Silencing. Adv Healthc Mater. 4 (5), 760-770 (2015).
  29. Greco, C. T., Epps, T. H., Sullivan, M. O. Mechanistic Design of Polymer Nanocarriers to Spatiotemporally Control Gene Silencing. ACS Biomater Sci Eng. 2 (9), 1582-1594 (2016).
  30. Green, M. D., et al. Catch and release: photocleavable cationic diblock copolymers as a potential platform for nucleic acid delivery. Polym Chem. 5 (19), 5535-5541 (2014).
  31. Lee, P. Y., Costumbrado, J., Hsu, C. Y., Kim, Y. H. Agarose Gel Electrophoresis for the Separation of DNA Fragments. J Vis Exp. (62), e3923 (2012).
  32. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 9 (7), 671-675 (2012).
  33. Marquer, C., Leveque-Fort, S., Potier, M. C. Determination of Lipid Raft Partitioning of Fluorescently-tagged Probes in Living Cells by Fluorescence Correlation Spectroscopy (FCS). J Vis Exp. (62), (2012).
  34. Staaf, E., Bagawath-Singh, S., Johansson, S. Molecular Diffusion in Plasma Membranes of Primary Lymphocytes Measured by Fluorescence Correlation Spectroscopy. J Vis Exp. (120), e54756 (2017).
  35. Buyens, K., et al. Monitoring the disassembly of siRNA polyplexes in serum is crucial for predicting their biological efficacy. J Control Release. 141 (1), 38-41 (2010).
  36. Eden, E., et al. Proteome Half-Life Dynamics in Living Human Cells. Science. 331 (6018), 764-768 (2011).
  37. Towbin, H., Staehelin, T., Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad. Sci U S A. 76 (9), 4350-4354 (1979).
  38. Wittwer, C. T., Herrmann, M. G., Moss, A. A., Rasmussen, R. P. Continuous Fluorescence Monitoring of Rapid Cycle DNA Amplification. Biotechniques. 54 (6), 314-320 (2013).
  39. Cho, S. K., Dang, C., Wang, X., Ragan, R., Kwon, Y. J. Mixing-sequence-dependent nucleic acid complexation and gene transfer efficiency by polyethylenimine. Biomater Sci. 3 (7), 1124-1133 (2015).
  40. Liu, Y. M., Reineke, T. M. Poly(glycoamidoamine)s for gene delivery: Stability of polyplexes and efficacy with cardiomyoblast cells. Bioconjugate Chem. 17 (1), 101-108 (2006).
  41. Schwanhausser, B., et al. Global quantification of mammalian gene expression control. Nature. 473 (7347), 337-342 (2011).
  42. Greco, C. T., Muir, V. G., Epps, T. H., Sullivan, M. O. Efficient tuning of siRNA dose response by combining mixed polymer nanocarriers with simple kinetic modeling. Acta Biomater. 50, 407-416 (2017).

Play Video

Cite This Article
Greco, C. T., Epps, III, T. H., Sullivan, M. O. Predicting Gene Silencing Through the Spatiotemporal Control of siRNA Release from Photo-responsive Polymeric Nanocarriers. J. Vis. Exp. (125), e55803, doi:10.3791/55803 (2017).

View Video