Summary

在机械生物学研究的轨道摇床上的 6 井板中分段内皮细胞的生长

Published: June 03, 2021
doi:

Summary

该协议描述了一种涂层方法,使用轨道摇床模型将内皮细胞生长限制在 6 井板的特定区域,用于剪切应力应用。

Abstract

血液流动对动脉壁施加的剪切应力影响内皮细胞形态和功能。低震级、振荡和多向剪切应力都被假定用于刺激内皮细胞中的亲动脉粥样硬化表型,而高震级和单向或单轴剪切被认为会促进内皮平衡。这些假设需要进一步研究,但传统的体外技术有局限性,在将多向剪切应力强加于细胞方面尤其差。

一种越来越被使用的方法是在轨道摇床平台上的标准多井板中培养内皮细胞:在这种简单、低成本、高通量和慢性方法中,涡流介质在油井的不同部分产生不同的剪切模式和幅度,包括多向剪切。然而,它有一个显著的限制:一个区域的细胞暴露在一种类型的流动中,可能会将调停器释放到影响井中其他部分的细胞的介质中,暴露在不同的流中,从而扭曲流和表型之间的明显关系。

在这里,我们介绍了一个简单和负担得起的方法修改,允许细胞暴露在特定的剪切应力特性。细胞播种仅限于油井的指定区域,将感兴趣的区域涂上纤维素,然后使用被动溶液进行活化。随后,板可以在摇床上旋转,导致细胞暴露在定义明确的剪切轮廓,如低震级多向剪切或高震级单轴剪切,这取决于其位置。与以往一样,使用标准的细胞培养塑料器皿可以直接进一步分析细胞。修改已经允许在定义的剪切应力特性下从内皮释放的可溶性介质的演示,这些细胞会影响位于井中其他地方的细胞。

Introduction

血管细胞对其机械环境的反应对血管的正常功能和疾病1的发展具有重要意义。排列在所有血管内表面的内皮细胞(ECs)的机械生物学一直是机械生物学研究的一个特别重点,因为ECs直接体验到血流产生的剪切应力。各种表型变化,如炎症反应,改变刚度和形态,血管活性物质的释放,以及结点蛋白的本地化和表达取决于EC暴露在剪切应力2,3,4。依赖剪切的内皮特性也可能是动脉粥样硬化5、6、7等疾病的零星发展的原因。

研究剪切对培养中 CC 的影响是有用的,因为文化可以控制应力,而 EC 可以与其他细胞类型隔离。常用的体外装置用于将剪切应力应用于 UC,包括平行板流室和锥板测速仪,但只能应用单轴稳定、振荡和脉动流8、9。虽然已开发出具有锥形或分支几何形状的改性流室和模仿维持几何形状的微流芯片,但其低通量和相对较短的文化持续时间可能构成挑战10, 11

用于研究内皮机械转移的轨道摇床(或旋转良好)方法,即细胞生长在放置在轨道摇床平台上的标准细胞培养塑料器皿中,正日益受到关注,因为它能够长期将复杂、空间变化的剪切应力模式强加于吞吐量高的 ES 上(见 Warboys 等人的评论)。已采用计算流体动力学 (CFD) 模拟来描述旋转井中剪切应力的空间和时间变化。放置板的摇床平台的轨道运动引起的培养介质的旋转运动导致中心低震级多向流(LMMF,或假定亲热流)和6井板块井边缘的高震级单轴流(HMUF,或假定动脉保护流)。例如,时间平均壁切变应力 (TAWSS) 在中心约为 0.3 Pa,在 6 井板的边缘为 0.7 Pa,在 150 rpm 旋转,轨道半径为 5 毫米,半径为 13。该方法只需要市售的塑料制品和轨道摇床本身。

然而,这种方法(以及体外施加流动的其他方法)有一个缺点:由于旋转介质中的混合,IC以依赖剪切的方式释放可溶性介质和微粒,这种分泌物可能会影响井下区域的ECs,而不是释放的区域。这可能掩盖剪切应力对EC表型的实际影响。例如,Ghim等人推测,这解释了不同剪切图对大粒子17的跨细胞传输的明显相同影响。

在这里,我们描述了一种方法,促进人类脐带内皮细胞(HUVEC)粘附在6井板的特定区域使用纤维素涂层,同时使用Pluronic F-127传递表面,防止生长其他地方。该方法解决了上述限制,因为通过细分细胞生长,ECs 只体验一种剪切轮廓,并且不受暴露于井中其他配置文件的 EC 的分泌物的影响。

Protocol

1. 制造设备和制备试剂 不锈钢模块的制造 根据提供的工程图(图1),使用数控铣床从316级不锈钢中制造不锈钢模块。 多晶硅氧烷 (PDMS) 模具的 3D 打印 根据提供的工程图(图2),使用固体工程制作 PDMS 模具的 3D 计算机辅助设计 (CAD) 模型。 将 CAD 模型导入 STL 文件,并将 STL 文件导入库拉 2.6.2。 …

Representative Results

HUVEC粘附到未涂有纤维素的井板区域,被普鲁罗尼奇F-127的通活性所废除:生长仅限于涂有纤维素的区域,即使在72小时的文化之后,有和没有剪切应力应用(图4A,图4C)。没有普鲁罗尼奇F-127的通电,HUVEC连接到表面没有纤维素,并进一步扩散了72小时的文化(图4B,图4D)。 <p cla…

Discussion

旋转井方法能够在单口井中生成复杂的流剖面 – 中心低震级多向流 (LMMF) 和井边缘的高震级单轴流 (HMUF)。然而,可溶性介质的剪切应激介分泌物将混合在漩涡介质中,影响整个井中的细胞,从而可能掩盖特定剪切应力特征对细胞的真正影响。

这里演示的涂层方法通过将细胞的生长限制在井的特定区域来克服这个问题。细胞通常附着在亲水表面,而不是疏水表面。因此,…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢英国心脏基金会项目赠款(PDW)、新加坡国家医学研究理事会TAAP和DYNAMO赠款(XW、NMRC/OFLCG/004/2018、NMRC/OFLCG/001/2017)、A*STAR研究生奖学金(致KTP)和英国心脏基金会卓越研究中心(MA)。

Materials

Cell and Media
Endothelial Growth Medium (EGM-2) Lonza cc-3162
Human Umbilical Vein Endothelial Cells NA NA Isolated from cords obtained from donors with uncomplicated labour at the Hammersmith Hospital
Reagents and Materials
Alexa Fuor 488-labelled goat anti-rabbit IgG Thermofisher Scientific A11008
Bovine Serum Albumin Sigma-Aldrich A9418-50G
Falcon 6 Well Clear Flat Bottom Not Treated  Scientific Laboratory Supplies Ltd  351146
Fibronectin from Bovine Plasma Sigma-Aldrich F1141-5MG
Paraformaldehyde Sigma-Aldrich 158127-500G
Phosphate-Buffered Saline Sigma-Aldrich D8537-6X500ML
Pluronic F-127 Sigma-Aldrich P2443
Recombinant Human TNF-a Peprotech 300-01A
RS PRO 2.85 mm Black PLA 3D Printer Filament, 1 kg RS 832-0264
Stainless Steel 316 Metal Supermarket NA
Sylgard184 Silicone Elastomer kit Farnell 101697
Triton X-100 Sigma-Aldrich X100-100ML
Trypsin-EDTA solution Sigma-Aldrich T4049-100ML
Zonula Occludens-1 (ZO-1) antibody Cell Signaling Technology 13663
DRAQ5 (5mM) Bio Status DR50200
Equipments
Grant Orbital Shaker PSU-10i Scientific Laboratory Supplies Ltd  SHA7930
Leica TCS SP5 Confocal Microscope Leica NA
Retaining Ring Pliers Misumi RTWP32-58
Retaining Rings/Internal/C-Type Misumi RTWS35
Ultimaker 2+3-D printer Ultimaker NA
Softwares
Cura 2.6.2 Ultimaker NA
MATLAB The MathWorks NA
Solidworks 2016 Dassault Systemes NA

References

  1. Hahn, C., Schwartz, M. A. Mechanotransduction in vascular physiology and atherogenesis. Nature Reviews Molecular Cell Biology. 10 (1), 53-62 (2009).
  2. Wang, C., Baker, B. M., Chen, C. S., Schwartz, M. A. Endothelial Cell Sensing of Flow Direction. Arteriosclerosis, Thrombosis, and Vascular Biology. 33 (9), 2130-2136 (2013).
  3. Tzima, E., et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature. 437, 426-431 (2005).
  4. Potter, C. M. F., Schobesberger, S., Lundberg, M. H., Weinberg, P. D., Mitchell, J. A., Gorelik, J. Shape and compliance of endothelial cells after shear stress in vitro or from different aortic regions: Scanning ion conductance microscopy study. PLoS ONE. 7 (2), 1-5 (2012).
  5. Asakura, T., Karino, T. Flow Patterns and Spatial Distribution of Atherosclerotic Lesions in Human. Circulation Research. 66 (4), 1045-1067 (1990).
  6. Bond, A. R., Iftikhar, S., Bharath, A. A., Weinberg, P. D. Morphological evidence for a change in the pattern of aortic wall shear stress with age. Arteriosclerosis, Thrombosis, and Vascular Biology. 31 (3), 543-550 (2011).
  7. Giddens, D. P., Zarins, C. K., Glagov, S. The role of fluid mechanics in the localization and detection of atherosclerosis. Journal of biomechanical engineering. 115, 588-594 (1993).
  8. Schnittler, H. J., Franke, R. P., Akbay, U., Mrowietz, C., Drenckhahn, D. Improved in vitro rheological system for studying the effect of fluid shear stress on cultured cells. The American journal of physiology. 265, 289-298 (1993).
  9. Levesque, M. J., Nerem, R. M. The elongation and orientation of cultured endothelial cells in response to shear stress. Journal of biomechanical engineering. 107 (4), 341-347 (1985).
  10. Chiu, J., et al. Analysis of the effect of disturbed flow on monocytic adhesion to endothelial cells. Journal of Biomechanics. 36 (12), 1883-1895 (2003).
  11. Venugopal Menon, N., et al. A tunable microfluidic 3D stenosis model to study leukocyte-endothelial interactions in atherosclerosis. APL Bioengineering. 2 (1), 016103 (2018).
  12. Warboys, C. M., Ghim, M., Weinberg, P. D. Understanding mechanobiology in cultured endothelium: A review of the orbital shaker method. Atherosclerosis. 285, 170-177 (2019).
  13. Ghim, M., Pang, K. T., Arshad, M., Wang, X., Weinberg, P. D. A novel method for segmenting growth of cells in sheared endothelial culture reveals the secretion of an anti-inflammatory mediator. Journal of Biological Engineering. 12 (1), 15 (2018).
  14. Sage, H., Pritzl, P., Bornstein, P. Secretory phenotypes of endothelial cells in culture: comparison of aortic, venous, capillary, and corneal endothelium. Arteriosclerosis. 1 (6), 427-442 (1981).
  15. Tunica, D. G., et al. Proteomic analysis of the secretome of human umbilical vein endothelial cells using a combination of free-flow electrophoresis and nanoflow LC-MS/MS. Proteomics. 9, 4991-4996 (2009).
  16. Griffoni, C., et al. Modification of proteins secreted by endothelial cells during modeled low gravity exposure. Journal of Cellular Biochemistry. 112, 265-272 (2011).
  17. Ghim, M., et al. Visualization of three pathways for macromolecule transport across cultured endothelium and their modification by flow. American Journal of Physiology-Heart and Circulatory Physiology. 313 (5), 959-973 (2017).
  18. Levesque, M. J., Liepsch, D., Moravec, S., Nerem, R. M. Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta. Arteriosclerosis: An Official Journal of the American Heart Association, Inc. 6 (2), 220-229 (1986).

Play Video

Cite This Article
Pang, K. T., Ghim, M., Arshad, M., Wang, X., Weinberg, P. D. Segmenting Growth of Endothelial Cells in 6-Well Plates on an Orbital Shaker for Mechanobiological Studies. J. Vis. Exp. (172), e61817, doi:10.3791/61817 (2021).

View Video