Summary

使用睡美人转座子系统对原代人色素上皮细胞进行基于电穿孔的遗传修饰

Published: February 04, 2021
doi:

Summary

我们开发了一种方案,通过使用 睡美人SB)转座子系统,通过编码色素上皮衍生因子(PEDF)的基因电穿孔来转染原代人色素上皮细胞。定量聚合酶链反应(qPCR)、免疫印迹和酶联免疫吸附测定(ELISA)证明了成功的转染。

Abstract

我们日益老龄化的社会导致神经退行性疾病的发病率上升。到目前为止,病理机制尚未得到充分了解,从而阻碍了确定的治疗方法的建立。用于增加保护因子表达的基于细胞的添加剂基因疗法被认为是治疗神经退行性疾病(如年龄相关性黄斑变性(AMD))的有前途的选择。我们开发了一种使用 睡美人SB)转座子系统将编码色素上皮衍生因子(PEDF)的基因稳定表达到原代人色素上皮(PE)细胞基因组中的方法,该因子的特征是神经系统中的神经保护和抗血管生成蛋白。从人类供体的眼睛中分离原代PE细胞并保持培养。达到汇合后,将1 x 104 个细胞悬浮在11 μL重悬缓冲液中,并与含有30 ng高活性 SBSB100X)转座酶质粒和470 ng PEDF 转座子质粒的2 μL纯化溶液合并。使用以下参数使用毛细管电穿孔系统进行基因改造:两个电压为1,100 V,宽度为20 ms的脉冲。将转染的细胞转移到含有补充有胎牛血清的培养基的培养板中;在第一次培养基交换时加入抗生素和抗真菌药。在独立进行的实验中证明了成功的转染。定量聚合酶链反应(qPCR)显示 PEDF 转基因的表达增加。通过免疫印迹评估,并通过酶联免疫吸附测定(ELISA)定量,PEDF分泌显着升高并保持稳定。 SB100X介导的转移允许稳定的PEDF基因整合到PE细胞的基因组中,并确保 PEDF 的连续分泌,这对于开发基于细胞的基因添加疗法以治疗AMD或其他视网膜退行性疾病至关重要。此外,对 PEDF 转座子与人PE细胞的整合谱的分析表明,基因组分布几乎是随机的。

Introduction

高龄被描述为神经退行性疾病的主要风险。年龄相关性黄斑变性(AMD)是一种导致60岁以上患者严重视力丧失的多基因疾病,属于失明和视力障碍的四个最常见原因1,预计到2040年将增加到2.88亿人2。视网膜色素上皮(RPE)功能障碍,即位于绒毛细血管和视网膜光感受器之间的单层紧密堆积的细胞,有助于AMD的发病机制。RPE完成对正常视网膜功能3至关重要的多项任务,并分泌多种生长因子和维持视网膜和脉络膜毛细血管结构完整性所必需的因子,从而支持光感受器存活并为循环和营养供应提供基础。

在健康的眼睛中,色素上皮衍生因子(PEDF)负责平衡血管内皮生长因子(VEGF)的作用,保护神经元免受细胞凋亡,防止内皮细胞增殖,并稳定毛细血管内皮。VEGF与PEDF比值的转移与眼部新生血管形成有关,在动物模型45以及AMD和增殖性糖尿病视网膜病变引起的脉络膜新生血管(CNV)患者样本中观察到6,78910.提高的VEGF浓度是当前标准处理的目标。抗VEGF药物贝伐珠单抗,雷珠单抗,阿柏西普以及最近的brolucizumab改善了约三分之一CNV患者的视力,或者更确切地说,在90%的病例中稳定了视力111213。然而,频繁的玻璃体内注射通常会带来不良事件的风险14,损害患者的依从性,并对医疗保健系统造成重大的经济负担15。此外,一定比例的患者(2%-20%)对抗VEGF治疗无反应或反应不佳16171819。这些阴性伴随因素需要开发替代疗法,例如眼内植入物、细胞和/或基因治疗方法。

基因疗法已经发展成为遗传性和非遗传性疾病的有前途的治疗方法,并打算恢复非功能性基因序列或抑制功能障碍的基因序列。对于几乎不可能识别和替代致病因素的多基因疾病,策略旨在持续提供保护因素。在AMD的情况下,已经开发了各种添加剂疗法,例如内皮抑素和血管抑素20的稳定表达,VEGF拮抗剂可溶性FMS样酪氨酸激酶-1(sFLT-1)21,22,补体调节蛋白簇分化59(CD59)23或PEDF2425.眼睛,尤其是视网膜,是基因药物的绝佳靶标,因为它具有封闭的结构、良好的可及性、小尺寸和免疫特权,因此允许局部递送低治疗剂量并使移植不易产生排斥反应。此外,眼睛可以进行无创监测,并且可以通过不同的成像技术检查视网膜。

由于其高转导效率,病毒载体是将治疗基因递送到靶细胞的主要载体。然而,根据所使用的病毒载体,已经描述了不同的不良反应,例如免疫和炎症反应26,诱变和致癌作用27,28或在其他组织中的播散29实际限制包括包装尺寸限制30以及与生产临床级批次3132相关的困难和成本。这些缺点促进了通过脂质体/多链体、超声或电穿孔转移的非病毒、基于质粒的载体的进一步发展。然而,质粒载体通常不会促进转基因与宿主基因组的基因组整合,从而导致瞬时表达。

转座子是天然存在的DNA片段,可以改变它们在基因组中的位置,这一特征已被用于基因治疗。由于具有主动整合机制,基于转座子的载体系统允许插入的转基因的连续和恒定表达。睡美人SB)转座子由鱼类33中发现的古代Tc1/mariner型转座子重组而成,并通过分子进化进一步改进,从而产生过度活跃的变体SB100X34,能够在各种原代细胞中实现有效转座,并用于不同疾病模型中的表型校正35。目前,使用SB转座子系统已启动13项临床试验。SB100X转座子系统由两部分组成:转座子,其包含目的基因,两侧是末端倒置重复序列(TIR))和转座酶,其动员转座子。在质粒DNA递送到细胞后,转座酶结合TIR并催化转座子的切除和整合到细胞基因组中。

我们开发了一种基于非病毒细胞的添加剂疗法,用于治疗新生血管性AMD。该方法包括通过SB100X转座子系统363738将基于电穿孔的PEDF基因插入原代色素上皮(PE)细胞中。转座酶和PEDF的遗传信息在单独的质粒上提供,从而能够调整理想的SB100XPEDF转座子比。电穿孔使用基于移液器的毛细管转染系统进行,其特点是电极之间的间隙尺寸最大化,同时最小化其表面积。该装置被证明在广泛的哺乳动物细胞中实现了出色的转染率394041。小电极表面积提供均匀的电场并减少电解的各种副作用42

转染色素上皮细胞分泌的PEDF的抗血管生成功能在分析人脐静脉内皮细胞发芽,迁移和凋亡的各种体外实验中显示43。此外,在角膜新生血管形成的兔模型44和CNV434546的大鼠模型中移植PEDF转染的细胞显示出新生血管的下降。

在这里,我们描述了使用毛细管转染系统通过SB100X转座子系统将PEDF基因稳定插入原代人RPE细胞的详细方案。将转染的细胞在培养物中保持21天,随后通过定量聚合酶链反应(qPCR)分析PEDF基因表达,并通过免疫印迹和酶联免疫吸附测定分析PEDF蛋白分泌(ELISA,图1)。

Protocol

根据《赫尔辛基宣言议定书》获得知情同意后,从亚琛工业大学医院眼科亚琛角膜库获得人类供体眼睛。收集和使用人体样本的程序已得到机构伦理委员会的批准。 1. 原代人RPE细胞的分离 摆好无菌防护服和手套。将无菌窗帘置于层流下。 将无菌制备仪器和其他必要的无菌设备置于层流下。 记录眼球的接收,准备的开始以及可能的异常。登记捐赠者的?…

Representative Results

原代人RPE细胞的培养和电穿孔我们已经表明,接种足够数量的动物源性原代RPE细胞可以培养和生长到色素沉着的六角形细胞的集成单层36,37,48。它们在体外形成紧密连接、表现出吞噬活性和表达特异性标记基因的能力48 反映了体内视网膜色素上皮的实质性任务。从人…

Discussion

在我们的项目中,我们的目标是非病毒生产转基因原代人类RPE细胞,这些细胞不断过表达并分泌有效因子,以便将转染的细胞用作建立和维持保护环境的长期治疗药物。我们已经建立了编码PEDF的基因的引入,PEDF是一种普遍表达的多功能蛋白质,具有抗血管生成和神经保护功能。此处描述的方案可用于使用 SB100X 转座子系统稳定且可重复地转染原代人RPE细胞。DNA递送和引入RPE细胞是使用基于…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了欧洲联盟第七研究、技术开发和示范框架方案(第305134号赠款协议)的支持。Zsuzsanna Izsvák由欧洲研究理事会ERC Advanced(ERC-2011-ADG 294742)资助。作者要感谢Anna Dobias和Antje Schiefer(亚琛工业大学医院眼科)的出色技术支持,以及亚琛角膜库(亚琛工业大学医院眼科)为人类捐赠者的眼睛提供。

Materials

Isolation of primary human RPE cells
24-Well Cell Culture Plate Eppendorf, Hamburg, Germany 0030722019
Amphotericin B [250 µg/mL] (AmphoB) Merck, Darmstadt, Germany A2942
Colibri Forceps Geuder, Heidelberg, Germany G-18950
Curved Iris Forceps  Geuder, Heidelberg, Germany G-18856
Disposable Scalpel (No. 11) Feather, Osaka, Japan
Dulbecco’s Modified Eagle’s Medium/Ham’s F-12 Nutrient Mixture (DMEM/F12) PAN-Biotech, Aidenbach, Germany P04-41150
Extra Fine Pointed Eye Scissor  Geuder, Heidelberg, Germany G-19405
Fetal Bovine Serum [0.2 µm Sterile Filtered] (FBS) PAN-Biotech, Aidenbach, Germany P40-37500
Glass Pasteur Pipettes Brand, Wertheim, Germany 747715
Penicillin [10,000 units/mL] and Streptomycin [10 mg/mL] (Pen/Strep) Merck, Darmstadt, Germany P0781
Pipette Tips (1000 µL) Starlab, Hamburg, Germany
Single Channel Pipette (100-1000 µL) Eppendorf, Hamburg, Germany
Sterile Drape Lohmann & Rauscher, Rengsdorf, Germany
Sterile Gauze Compress  Fink-Walter, Merchweiler, Germany 321063
Sterile Gloves Sempermed, Wien, Austria
Sterile Petri Dish (Falcon 60 mm x 15 mm) Corning, Corning, NY 351007
Sterile Surgical Gown Halyard Health, Alpharetta, GA
Straight Iris Forceps  Geuder, Heidelberg, Germany G-18855
Electroporation of primary human RPE cells
10 mM Tris-HCl (pH 8.5)
12-Well Cell Culture Plate Thermo Fisher Scientific, Waltham, MA 150628
24-Well Cell Culture Plate Eppendorf, Hamburg, Germany 0030722019
Amphotericin B [250 µg/mL] (AmphoB) Merck, Darmstadt, Germany A2942
Dulbecco’s Modified Eagle’s Medium/Ham’s F-12 Nutrient Mixture (DMEM/F12) PAN-Biotech, Aidenbach, Germany P04-41150
Safe-Lock Microcentrifuge Tubes (1.5 mL) Eppendorf, Hamburg, Germany
Fetal Bovine Serum [0.2 µm Sterile Filtered] (FBS) PAN-Biotech, Aidenbach, Germany P40-37500
Inverted Microscope Leica Mikrosysteme, Wetzlar, Germany Leica DMi8
Microvolume Spectrophotometer (NanoDrop Spectrophotometer) Thermo Fisher Scientific, Waltham, MA
Capillary Transfection System (Neon Transfection System) Thermo Fisher Scientific, Waltham, MA MPK5000
Neon Transfection System 10 µL Kit Thermo Fisher Scientific, Waltham, MA MPK1096
Hemocytometer (Neubauer Chamber) Paul Marienfeld, Lauda-Königshofen, Germany 0640110
PBS Dulbecco w/o Ca2+ w/o Mg2+ Biochrom, Berlin, Germany L182-50
Penicillin [10,000 units/mL] and Streptomycin [10 mg/mL] (Pen/Strep) Merck, Darmstadt, Germany P0781
Pipette Tips (10 µL) Starlab, Hamburg, Germany
Pipette Tips (1000 µL) Starlab, Hamburg, Germany
Pipette Tips (200 µL) Starlab, Hamburg, Germany
Plasmid Maxi Kit Qiagen, Hilden, Germany 12163
Single Channel Pipette (0.1-10 µL) Eppendorf, Hamburg, Germany
Single Channel Pipette (100-1000 µL) Eppendorf, Hamburg, Germany
Single Channel Pipette (10-200 µL) Eppendorf, Hamburg, Germany
Trypan Blue Solution Merck, Darmstadt, Germany T8154
Trypsin-EDTA (0,05 %) Thermo Fisher Scientific, Waltham, MA 25300054
Analyses of transfected primary human RPE cells
10% SDS-Polyacrylamide Gel
1x Incubation Buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH 8.0)
2x SDS Sample Buffer
4x Incubation Buffer (200 mM NaH2PO4, 1.2 M NaCl, 40 mM imidazole, pH 8.0)
Amersham Protran Supported 0.2 µm Nitrocellulose Blotting Membrane Cytiva, Marlborough, MA 10600015
Amphotericin B [250 µg/mL] (AmphoB) Merck, Darmstadt, Germany A2942
Anti-PEDF Antibodies (Rabbit Polyclonal) BioProducts, Middletown, MD AB-PEDF1
Anti-Penta-His Antibodies (Mouse Monoclonal) Qiagen, Hilden, Germany 34660
Dulbecco’s Modified Eagle’s Medium/Ham’s F-12 Nutrient Mixture (DMEM/F12) PAN-Biotech, Aidenbach, Germany P04-41150
Elution Buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole, pH 8.0) 
Fetal Bovine Serum [0.2 µm Sterile Filtered] (FBS) PAN-Biotech, Aidenbach, Germany P40-37500
Hemocytometer (Neubauer Chamber) Paul Marienfeld, Lauda-Königshofen, Germany 0640110
Horseradish Peroxidase-Conjugated Anti-Mouse Antibodies (Rabbit Polyclonal) Agilent Dako, Santa Clara, CA P0260
Horseradish Peroxidase-Conjugated Anti-Rabbit Antibodies (Goat Polyclonal) Abcam, Cambridge, United Kingdom ab6721
Human PEDF ELISA Kit  BioProducts, Middletown, MD PED613
LAS-3000 Imaging System Fujifilm, Minato, Japan
LightCycler 1.2 Instrument Roche Life Science, Penzberg, Germany
LightCycler FastStart DNA Master SYBR Green I Roche Life Science, Penzberg, Germany 12239264001
LightCycler Capillaries (20 μl) Roche Life Science, Penzberg, Germany 4929292001
Microvolume Spectrophotometer (NanoDrop Spectrophotometer) Thermo Fisher Scientific, Waltham, MA
Mini-PROTEAN Tetra Cell Casting Module Bio-Rad Laboratories, Feldkirchen, Germany 1658015
Mini-PROTEAN Tetra Vertical Electrophoresis Cell for Mini Precast Gels, 4-gel Bio-Rad Laboratories, Feldkirchen, Germany 1658004
Ni-NTA Superflow Qiagen, Hilden, Germany 30410
PageRuler Prestained Protein Ladder Thermo Fisher Scientific, Waltham, MA 26616
Penicillin [10,000 units/mL] and Streptomycin [10 mg/mL] (Pen/Strep) Merck, Darmstadt, Germany P0781
Pipette Tips (10 µL) Starlab, Hamburg, Germany
Pipette Tips (1000 µL) Starlab, Hamburg, Germany
Pipette Tips (200 µL) Starlab, Hamburg, Germany
PowerPac Basic Power Supply Bio-Rad Laboratories, Feldkirchen, Germany 1645050
QIAamp DNA Mini Kit Qiagen, Hilden, Germany 51304
Reverse Transcription System  Promega, Madison, WI A3500
RNase-Free DNase Set Qiagen, Hilden, Germany 79254
RNeasy Mini Kit  Qiagen, Hilden, Germany 74104
Rocking Shaker Cole-Parmer, Staffordshire, United Kingdom SSM3
Safe-Lock Microcentrifuge Tubes (1.5 mL) Eppendorf, Hamburg, Germany
Safe-Lock Microcentrifuge Tubes (2.0 mL) Eppendorf, Hamburg, Germany
Single Channel Pipette (0.1-10 µL) Eppendorf, Hamburg, Germany
Single Channel Pipette (100-1000 µL) Eppendorf, Hamburg, Germany
Single Channel Pipette (10-200 µL) Eppendorf, Hamburg, Germany
Trans-Blot Turbo Transfer System Bio-Rad Laboratories, Feldkirchen, Germany 1704150
Trypan Blue Solution Merck, Darmstadt, Germany T8154
Trypsin-EDTA (0,05 %) Thermo Fisher Scientific, Waltham, MA 25300054

References

  1. James, S. L., et al. national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 392 (10159), 1789-1858 (2018).
  2. Wong, W. L., et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Global Health. 2 (2), 106-116 (2014).
  3. Strauss, O. The retinal pigment epithelium in visual function. Physiological Reviews. 85 (3), 845-881 (2005).
  4. Chan, C. K., et al. Differential expression of pro- and antiangiogenic factors in mouse strain-dependent hypoxia-induced retinal neovascularization. Laboratory Investigation. 85 (6), 721-733 (2005).
  5. Gao, G., et al. Unbalanced expression of VEGF and PEDF in ischemia-induced retinal neovascularization. FEBS Letters. 489 (2-3), 270-276 (2001).
  6. Bhutto, I. A., et al. Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in aged human choroid and eyes with age-related macular degeneration. Experimental Eye Research. 82 (1), 99-110 (2006).
  7. Holekamp, N. M., Bouck, N., Volpert, O. Pigment epithelium-derived factor is deficient in the vitreous of patients with choroidal neovascularization due to age-related macular degeneration. American Journal of Ophthalmology. 134 (2), 220-227 (2002).
  8. Kolomeyer, A. M., Sugino, I. K., Zarbin, M. A. Characterization of conditioned media collected from aged versus young human eye cups. Investigative Ophthalmology & Visual Science. 52 (8), 5963-5972 (2011).
  9. Li, X., et al. The significance of the increased expression of phosphorylated MeCP2 in the membranes from patients with proliferative diabetic retinopathy. Scientific Reports. 6, 32850 (2016).
  10. Mohan, N., Monickaraj, F., Balasubramanyam, M., Rema, M., Mohan, V. Imbalanced levels of angiogenic and angiostatic factors in vitreous, plasma and postmortem retinal tissue of patients with proliferative diabetic retinopathy. Journal of Diabetes and its Complications. 26 (5), 435-441 (2012).
  11. Empeslidis, T., et al. How successful is switching from Bevacizumab or Ranibizumab to Aflibercept in Age-Related Macular Degeneration? A systematic overview. Advances in Therapy. 36 (7), 1532-1548 (2019).
  12. Solomon, S. D., Lindsley, K., Vedula, S. S., Krzystolik, M. G., Hawkins, B. S. Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database of Systematic Reviews. 3, (2019).
  13. Dugel, P. U., et al. phase 3, multicenter, randomized, double-masked trials of brolucizumab for neovascular age-related macular degeneration. Ophthalmology. 127 (1), 72-84 (2020).
  14. Falavarjani, K. G., Nguyen, Q. D. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye. 27 (7), 787-794 (2013).
  15. Jaffe, D. H., Chan, W., Bezlyak, V., Skelly, A. The economic and humanistic burden of patients in receipt of current available therapies for nAMD. Journal of Comparative Effectiveness Research. 7 (11), 1125-1132 (2018).
  16. Eghoj, M. S., Sorensen, T. L. Tachyphylaxis during treatment of exudative age-related macular degeneration with ranibizumab. British Journal of Ophthalmology. 96 (1), 21-23 (2012).
  17. Forooghian, F., Cukras, C., Meyerle, C. B., Chew, E. Y., Wong, W. T. Tachyphylaxis after intravitreal bevacizumab for exudative age-related macular degeneration. Retina – The Journal of Retinal and Vitreous Diseases. 29 (6), 723-731 (2009).
  18. Otsuji, T., et al. Initial non-responders to ranibizumab in the treatment of age-related macular degeneration (AMD). Clinical Ophthalmology. 7, 1487-1490 (2013).
  19. Zuber-Laskawiec, K., Kubicka-Trzaska, A., Karska-Basta, I., Pociej-Marciak, W., Romanowska-Dixon, B. Non-responsiveness and tachyphylaxis to anti-vascular endothelial growth factor treatment in naive patients with exudative age-related macular degeneration. Journal of Physiology and Pharmacology. 70 (5), (2019).
  20. Campochiaro, P. A., et al. Lentiviral vector gene transfer of endostatin/angiostatin for macular degeneration (GEM) study. Human Gene Therapy. 28 (1), 99-111 (2017).
  21. Constable, I. J., et al. Phase 2a randomized clinical trial: safety and post hoc analysis of subretinal rAAV.sFLT-1 for wet age-related macular degeneration. EBioMedicine. 14, 168-175 (2016).
  22. Rakoczy, E. P., et al. Three-year follow-up of phase 1 and 2a rAAV.sFLT-1 subretinal gene therapy trials for exudative age-related macular degeneration. American Journal of Ophthalmology. 204, 113-123 (2019).
  23. Kumar-Singh, R. The role of complement membrane attack complex in dry and wet AMD – from hypothesis to clinical trials. Experimental Eye Research. 184, 266-277 (2019).
  24. Campochiaro, P. A., et al. Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. Human Gene Therapy. 17 (2), 167-176 (2006).
  25. Campochiaro, P. A. Gene transfer for neovascular age-related macular degeneration. Human Gene Therapy. 22 (5), 523-529 (2011).
  26. Ahi, Y. S., Bangari, D. S., Mittal, S. K. Adenoviral vector immunity: its implications and circumvention strategies. Current Gene Therapy. 11 (4), 307-320 (2011).
  27. Hacein-Bey-Abina, S., et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. New England Journal of Medicine. 363 (4), 355-364 (2010).
  28. Howe, S. J., et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. Journal of Clinical Investigation. 118 (9), 3143-3150 (2008).
  29. Stieger, K., et al. Subretinal delivery of recombinant AAV serotype 8 vector in dogs results in gene transfer to neurons in the brain. Molecular Therapy. 16 (5), 916-923 (2008).
  30. Tornabene, P., Trapani, I. Can adeno-associated viral vectors deliver effectively large genes. Human Gene Therapy. 31 (1-2), 47-56 (2020).
  31. Ayuso, E. Manufacturing of recombinant adeno-associated viral vectors: new technologies are welcome. Molecular Therapy – Methods & Clinical Development. 3, 15049 (2016).
  32. van der Loo, J. C., Wright, J. F. Progress and challenges in viral vector manufacturing. Human Molecular Genetics. 25, 42-52 (2016).
  33. Ivics, Z., Hackett, P. B., Plasterk, R. H., Izsvak, Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell. 91 (4), 501-510 (1997).
  34. Mates, L., et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nature Genetics. 41 (6), 753-761 (2009).
  35. Izsvak, Z., Hackett, P. B., Cooper, L. J., Ivics, Z. Translating Sleeping Beauty transposition into cellular therapies: victories and challenges. Bioessays. 32 (9), 756-767 (2010).
  36. Thumann, G., et al. High efficiency non-viral transfection of retinal and iris pigment epithelial cells with pigment epithelium-derived factor. Gene Therapy. 17 (2), 181-189 (2010).
  37. Johnen, S., et al. Sleeping Beauty transposon-mediated transfection of retinal and iris pigment epithelial cells. Investigative Ophthalmology & Visual Science. 53 (8), 4787-4796 (2012).
  38. Thumann, G., et al. Engineering of PEDF-expressing primary pigment epithelial cells by the SB transposon system delivered by pFAR4 plasmids. Molecular Therapy – Nucleic Acids. 6, 302-314 (2017).
  39. Abdul Halim, N. S., Fakiruddin, K. S., Ali, S. A., Yahaya, B. H. A comparative study of non-viral gene delivery techniques to human adipose-derived mesenchymal stem cell. International Journal of Molecular Sciences. 15 (9), 15044-15060 (2014).
  40. Ahlemeyer, B., Vogt, J. F., Michel, V., Hahn-Kohlberger, P., Baumgart-Vogt, E. Microporation is an efficient method for siRNA-induced knockdown of PEX5 in HepG2 cells: evaluation of the transfection efficiency, the PEX5 mRNA and protein levels and induction of peroxisomal deficiency. Histochemistry and Cell Biology. 142 (5), 577-591 (2014).
  41. May, R. D., et al. Efficient nonviral transfection of primary intervertebral disc cells by electroporation for tissue engineering application. Tissue Engineering Part C – Methods. 23 (1), 30-37 (2017).
  42. Kim, J. A., et al. A novel electroporation method using a capillary and wire-type electrode. Biosensors & Bioelectronics. 23 (9), 1353-1360 (2008).
  43. Johnen, S., et al. Antiangiogenic and neurogenic activities of Sleeping Beauty-mediated PEDF-transfected RPE cells in vitro and in vivo. Biomed Research International. 2015, 863845 (2015).
  44. Kuerten, D., et al. Transplantation of PEDF-transfected pigment epithelial cells inhibits corneal neovascularization in a rabbit model. Graefes Archive for Clinical and Experimental Ophthalmology. 253 (7), 1061-1069 (2015).
  45. Garcia-Garcia, L., et al. Long-term PEDF release in rat iris and retinal epithelial cells after Sleeping Beauty transposon-mediated gene delivery. Molecular Therapy – Nucleic Acids. 9, 1-11 (2017).
  46. Hernandez, M., et al. Preclinical evaluation of a cell-based gene therapy using the Sleeping Beauty transposon system in choroidal neovascularization. Molecular Therapy – Methods & Clinical Development. 15, 403-417 (2019).
  47. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227 (5259), 680-685 (1970).
  48. Johnen, S., et al. Presence of xenogenic mouse RNA in RPE and IPE cells cultured on mitotically inhibited 3T3 fibroblasts. Investigative Ophthalmology & Visual Science. 52 (5), 2817-2824 (2011).
  49. Gogol-Doring, A., et al. Genome-wide profiling reveals remarkable parallels between insertion site selection properties of the MLV retrovirus and the piggyBac transposon in primary human CD4(+) T cells. Molecular Therapy. 24 (3), 592-606 (2016).
  50. Holstein, M., et al. Efficient non-viral gene delivery into human hematopoietic stem cells by minicircle Sleeping Beauty transposon vectors. Molecular Therapy. 26 (4), 1137-1153 (2018).
  51. Moldt, B., et al. Comparative genomic integration profiling of Sleeping Beauty transposons mobilized with high efficacy from integrase-defective lentiviral vectors in primary human cells. Molecular Therapy. 19 (8), 1499-1510 (2011).
  52. Yant, S. R., et al. High-resolution genome-wide mapping of transposon integration in mammals. Molecular and Cellular Biology. 25 (6), 2085-2094 (2005).
  53. Grabundzija, I., et al. Comparative analysis of transposable element vector systems in human cells. Molecular Therapy. 18 (6), 1200-1209 (2010).
  54. Dunn, K. C., Aotaki-Keen, A. E., Putkey, F. R., Hjelmeland, L. M. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Experimental Eye Research. 62 (2), 155-169 (1996).
  55. Chang, L., et al. Micro-/nanoscale electroporation. Lab on a Chip. 16 (21), 4047-4062 (2016).
  56. Shi, J., et al. A review on electroporation-based intracellular delivery. Molecules. 23 (11), (2018).
  57. Johnen, S., et al. Endogenic regulation of proliferation and zinc transporters by pigment epithelial cells nonvirally transfected with PEDF. Investigative Ophthalmology & Visual Science. 52 (8), 5400-5407 (2011).
  58. Pastor, M., et al. The antibiotic-free pFAR4 vector paired with the Sleeping Beauty transposon system mediates efficient transgene delivery in human cells. Molecular Therapy – Nucleic Acids. 11, 57-67 (2018).
check_url/cn/61987?article_type=t

Play Video

Cite This Article
Johnen, S., Harmening, N., Marie, C., Scherman, D., Izsvák, Z., Ivics, Z., Walter, P., Thumann, G. Electroporation-Based Genetic Modification of Primary Human Pigment Epithelial Cells Using the Sleeping Beauty Transposon System. J. Vis. Exp. (168), e61987, doi:10.3791/61987 (2021).

View Video