Summary

心内注射人前列腺癌细胞以创建骨转移异种移植小鼠模型

Published: November 04, 2022
doi:

Summary

在这里,我们提出了一种用于心内注射人前列腺癌细胞的方案,以生成具有骨转移病变的小鼠模型。

Abstract

作为最常见的男性恶性肿瘤,前列腺癌(PC)的死亡率排名第二,主要是由于65%-75%的骨转移率。因此,了解前列腺癌骨转移的过程和相关机制对于开发新的治疗方法至关重要。为此,骨转移的动物模型是必不可少的工具。在这里,我们报告了通过心内注射前列腺癌细胞 生成骨转移小鼠模型的详细程序。生物发光成像系统可以确定前列腺癌细胞是否已准确注射到心脏中并监测癌细胞转移,因为它在监测转移性病变发展方面具有很大的优势。该模型复制播散癌细胞的自然发育,在骨骼中形成微转移,并模仿前列腺癌骨转移的病理过程。为进一步探索本病的分子机制和 体内 治疗效果提供了有效的工具。

Introduction

前列腺癌是112个国家中男性最常见的癌症,在人类发展指数较高的国家中排名第二12。前列腺癌患者的死亡大多是由转移引起的,约65%-75%的病例会发生骨转移34。因此,迫切需要预防和治疗前列腺癌骨转移,以改善前列腺癌患者的临床结果。骨转移动物模型是探索前列腺癌骨转移各阶段涉及的多阶段过程和分子机制,从而确定治疗靶点和开发新疗法不可或缺的工具5。

生成前列腺癌骨转移实验动物模型的最常见方法包括原位、骨干内(如胫骨内)和心内注射前列腺癌细胞。原位注射的骨转移模型是通过将前列腺癌细胞直接注射到小鼠的前列腺中而生成的67。该实验动物模型与前列腺癌骨转移具有非常相似的临床特征。然而,转移主要发生在腋窝淋巴结和肺,而不是骨89。前列腺癌的胫内注射模型直接将前列腺癌细胞注射到胫骨中,骨(胫骨)肿瘤形成率高1011;但是,骨皮层和骨髓腔很容易受损。此外,胫骨注射方法不能刺激前列腺癌骨转移的病理过程,其中癌细胞通过循环定植骨骼。为了研究癌细胞骨转移率较高的循环、血管外渗和远处转移,已经开发出一种通过将前列腺癌细胞直接注射到小鼠左心室的心内注射技术81213。这使其成为骨转移研究的有价值的动物模型8。心内注射法显示骨转移率约为75%914远高于原位注射法。因此,心内注射是生成前列腺癌骨转移动物模型的理想方法。

这项工作旨在描述建立前列腺癌骨转移小鼠模型的过程,让读者可视化模型的建立。目前的工作提供了详细的过程,预防措施和说明性图片,以通过在无胸腺小鼠中心内注射人前列腺癌细胞 生成骨转移异种移植模型。该方法为进一步探索前列腺癌骨转移的分子机制和 体内 治疗效果提供了有效的工具。

Protocol

6至8周龄雄性BALB / c无胸腺小鼠(n = 10)在12小时光照/黑暗循环条件下,在无特异性(SPF)动物室中单独通风的小鼠笼子(5只小鼠/笼)中,自由获得SPF饲料和无菌水。小鼠在实验前适应性喂养一周。所有动物实验均经上海中医药大学动物福利委员会批准。 1. 细胞制备 在前列腺癌细胞注射当天,用预冷无菌PBS(pH 7.4)洗涤在10cm细胞培养皿中培养的80%-90%汇?…

Representative Results

生物发光成像在监测心内注射模型的转移性病变发展方面具有巨大的优势。癌细胞注射后不久(24小时内),使用生物发光成像来可视化进入一般循环的癌细胞(图3A)。当癌细胞被正确注射到动脉循环中时,全身都会看到明显的生物发光信号。来自仅在注射部位(心脏)显示生物发光信号的小鼠数据应从最终数据收集中排除。细胞注射后2周观察到后肢的转移性病变(<strong …

Discussion

心内注射人前列腺癌细胞产生骨转移是探索前列腺癌骨转移的功能和机制以及评价治疗效果的理想小鼠模型。研究表明,骨损伤最有可能发生在胫骨近端和股骨远端17,这可能是由于它们的高血管化和代谢活性。

由于骨转移是乳腺癌患者中经常观察到的转移性病变,因此通过心内注射乳腺癌细胞产生的骨转移模型也常用于乳腺癌研究18?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家重点研发计划(2018YFC1704300和2020YFE0201600)、国家自然科学基金(81973877和82174408)、上海中医药大学预算内的研究项目(2021LK047)和上海市医院中药制剂产业转化协同创新中心的资助。

Materials

1 mL syringes and needles Shandong Weigao Group Medical Polymer Co., Ltd 20200411 The cells were injected into the ventricles of mice
Anesthesia machine Shenzhen RWD Life Technology Co., Ltd R500IP Equipment for anesthetizing mice
Automatic cell counter Shanghai Simo Biological Technology Co., Ltd IC1000  For counting cells
BALB/c athymic mice Shanghai SLAC Laboratory Animal Co, Ltd. Male 6-8 week old, male mice
Bioluminescence imaging system Shanghai Baitai Technology Co., Ltd Vieworks For tracking the tumor growth and pulmonary metastasis if the injected cells are labeled by luciferase
Centrifuge tube (15 mL, 50 mL) Shanghai YueNian Biotechnology Co., Ltd  430790, Corning
EDTA solution Wuhan Xavier Biotechnology Co., Ltd G1105  For decalcification of bone tissure
F-12 medium Shanghai YueNian Biotechnology Co., Ltd 21700075, GIBCO Cell culture medium
Formalin solution Shanghai YueNian Biotechnology Co., Ltd BL539A For fixing the specimen of each mouse
Isoflurane Shenzhen RWD Life Technology Co., Ltd VETEASY For anesthesia 
Lipofectamine 2000 Shanghai YueNian Biotechnology Co., Ltd 11668027, Thermo fisher Plasmid transfection reagent
PC-3 cell line Cell Bank of Chinese Academy of Sciences TCHu 158 Prostate cancer cell line
Phosphate-buffered saline Beyotime Biotechnology ST447 Wash the human osteosarcoma cells
Trypsin (0.25%) Shanghai YueNian Biotechnology Co., Ltd 25200056, Gibco For detaching the cells
Vector (pLV-luciferase) Shanghai YueNian Biotechnology Co., Ltd VL3613 Plasmid for transfection
X-ray imaging system Brook (Beijing) Technology Co., Ltd FX PRO For obtaining x-ray images to detect tumor growth
μCT80 Shenzhen Fraun Technology Service Co., Ltd Scanco Medical AG,Switzerland For detection of bone destruction. The mico-CT is equipped with 3DCalc, cone reconstruction,  and μCT Ray V3.4A model visualization software.

References

  1. Siegel, R. L., Miller, K. D., Fuchs, H. E., Jemal, A. Cancer Cancerstatistics, 2021. CA: A Cancer Journal for Clinicians. 71 (1), 7-33 (2021).
  2. Sung, H., et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 71 (3), 209-249 (2021).
  3. Coleman, R. E. Skeletal complications of malignancy. Cancer. 80, 1588-1594 (1997).
  4. Macedo, F., et al. Bone metastases: An overview. Oncology Reviews. 11 (1), 321 (2017).
  5. Rea, D., et al. Mouse models in prostate cancer translational research: From xenograft to PDX. BioMed Research International. 2016, 9750795 (2016).
  6. Zhang, Y., et al. Real-time GFP intravital imaging of the differences in cellular and angiogenic behavior of subcutaneous and orthotopic nude-mouse models of human PC-3 prostate cancer. Journal of Cellular Biochemistry. 117 (11), 2546-2551 (2016).
  7. Stephenson, R. A., et al. Metastatic model for human prostate cancer using orthotopic implantation in nude mice. Journal of the National Cancer Institute. 84 (12), 951-957 (1992).
  8. Simmons, J. K., et al. Animal models of bone metastasis. Veterinary Pathology. 52 (5), 827-841 (2015).
  9. Jenkins, D. E., Hornig, Y. S., Oei, Y., Dusich, J., Purchio, T. Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice. Breast Cancer Research: BCR. 7 (4), 444-454 (2005).
  10. Corey, E., et al. Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells. The Prostate. 52 (1), 20-33 (2002).
  11. Andersen, C., Bagi, C. M., Adams, S. W. Intra-tibial injection of human prostate cancer cell line CWR22 elicits osteoblastic response in immunodeficient rats. Journal of Musculoskeletal & Neuronal Interactions. 3 (2), 148-155 (2003).
  12. Sudhan, D. R., Pampo, C., Rice, L., Siemann, D. W. Cathepsin L inactivation leads to multimodal inhibition of prostate cancer cell dissemination in a preclinical bone metastasis model. International Journal of Cancer. 138 (11), 2665-2677 (2016).
  13. Jinnah, A. H., Zacks, B. C., Gwam, C. U., Kerr, B. A. Emerging and established models of bone metastasis. Cancers. 10 (6), 176 (2018).
  14. Simmons, J. K., et al. Canine prostate cancer cell line (Probasco) produces osteoblastic metastases in vivo. The Prostate. 74 (13), 1251-1265 (2014).
  15. Lamar, J. M., et al. SRC tyrosine kinase activates the YAP/TAZ axis and thereby drives tumor growth and metastasis. The Journal of Biological Chemistry. 294 (7), 2302-2317 (2019).
  16. Chang, J., et al. Matrine inhibits prostate cancer via activation of the unfolded protein response/endoplasmic reticulum stress signaling and reversal of epithelial to mesenchymal transition. Molecular Medicine Reports. 18 (1), 945-957 (2018).
  17. Arguello, F., Baggs, R. B., Frantz, C. N. A murine model of experimental metastasis to bone and bone marrow. 癌症研究. 48 (23), 6876-6881 (1988).
  18. Brylka, L., et al. Spine Metastases in immunocompromised mice after intracardiac injection of MDA-MB-231-SCP2 breast cancer cells. Cancers. 14 (3), 556 (2022).
  19. Rahman, M. M., Veigas, J. M., Williams, P. J., Fernandes, G. DHA is a more potent inhibitor of breast cancer metastasis to bone and related osteolysis than EPA. Breast Cancer Research and Treatment. 141 (3), 341-352 (2013).
  20. Park, S. I., Kim, S. J., McCauley, L. K., Gallick, G. E. Pre-clinical mouse models of human prostate cancer and their utility in drug discovery. Current Protocols in Pharmacology. , (2010).
  21. Wright, L. E., et al. Murine models of breast cancer bone metastasis. BoneKEy Reports. 5, 804 (2016).
  22. Fearon, K. C., Glass, D. J., Guttridge, D. C. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metabolism. 16 (2), 153-166 (2012).
  23. Waning, D. L., et al. Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nature Medicine. 21 (11), 1262-1271 (2015).
  24. Talbot, S. R., et al. Defining body-weight reduction as a humane endpoint: a critical appraisal. Laboratory Animals. 54 (1), 99-110 (2020).
  25. Paget, S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Reviews. 8 (2), 98-101 (1989).
  26. Yin, J. J., et al. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. The Journal of Clinical Investigation. 103 (2), 197-206 (1999).
  27. Schneider, A., et al. turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology. 146 (4), 1727-1736 (2005).
  28. Padalecki, S. S., et al. Chromosome 18 suppresses prostate cancer metastases. Urologic Oncology. 21 (5), 366-373 (2003).
check_url/cn/64589?article_type=t

Play Video

Cite This Article
Chang, J., Sun, X., Ma, X., Zhao, P., Shi, B., Wang, Y., Han, X., Yang, Y. Intra-Cardiac Injection of Human Prostate Cancer Cells to Create a Bone Metastasis Xenograft Mouse Model. J. Vis. Exp. (189), e64589, doi:10.3791/64589 (2022).

View Video