Summary

评估纳米乳剂佐剂疫苗对耐甲氧西林 金黄色葡萄球菌 (MRSA)感染的免疫反应

Published: September 01, 2023
doi:

Summary

本协议制备和评估新型纳米乳剂佐剂疫苗的物理特性、免疫应答和 体内 保护作用。

Abstract

纳米乳佐剂疫苗因其粒径小、热稳定性高、有效诱导免疫应答的能力等特点而受到广泛关注。然而,建立一系列全面的方案来评估新型纳米乳剂佐剂疫苗的免疫反应至关重要。因此,本文采用严格的程序来确定疫苗的理化特性(通过透射电子显微镜 [TEM]、原子力显微镜 [AFM] 和动态光散射 [DLS])、疫苗抗原和系统的稳定性(通过高速离心机测试、热力学稳定性测试、SDS-PAGE 和蛋白质印迹)和特异性免疫应答(IgG1, IgG2a 和 IgG2b)。使用这种方法,研究人员可以 准确评估新型纳米乳剂佐剂疫苗在致死MRSA252小鼠模型中的保护作用。通过这些方案,可以确定在有效佐剂潜力方面最有希望的纳米乳疫苗佐剂。此外,这些方法可以帮助优化新型疫苗的未来开发。

Introduction

耐甲氧西林 金黄色葡萄球菌 (MRSA) 是一种机会性病原体,是全球重症监护病房 (ICU)1 病房、心脏病科和烧伤科感染率最高的病原体之一。MRSA表现出较高的感染率,死亡率和广泛的耐药性,在临床治疗中存在很大的困难2。在世界卫生组织(WHO)于2017年发布的抗生素耐药细菌全球优先清单中,MRSA被列为最关键的第3类。因此,迫切需要针对MRSA感染的疫苗。

铝助剂使用时间较长,佐剂辅助机理比较明确,安全有效,耐受性好4.铝助剂是目前广泛使用的佐剂类型。一般认为吸附在铝盐颗粒上的抗原可以提高注射部位的稳定性,增强吸收抗原的能力,提供良好的吸收和缓释5。目前,铝佐剂的主要缺点是它们缺乏佐剂作用或仅对某些候选疫苗抗原表现出弱佐剂作用6。此外,铝佐剂诱导IgE介导的超敏反应5。因此,有必要开发新型佐剂来刺激更强的免疫反应。

纳米乳液助剂是由油、水、表面活性剂和助表面活性剂7组成的胶体分散体系。此外,佐剂具有热力学稳定性和各向同性,可通过高速离心高压灭菌或稳定,并且可以在温和的制备条件下自发形成。目前市场上有几种乳液助剂(如MF59、NB001-002系列、AS01-04系列等),但其粒径大于160nm8。因此,纳米级(1-100 nm)药物制剂的优势(即大比表面积、小粒径、表面效应、高表面能、小尺寸效应和宏观量子隧穿效应)无法得到充分利用。在本协议中,据报道,一种基于纳米乳液技术的新型佐剂具有直径尺寸为1-100nm的佐剂,其具有良好的佐剂活性9。我们测试了重组亚基疫苗抗原蛋白HI(α-溶血素突变体[Hla]和Fe离子表面决定因子B[IsdB]亚基N2活性片段融合蛋白);建立了一系列程序来检查疫苗的物理性质和稳定性,评估其肌内给药后的特异性抗体反应,并使用小鼠全身感染模型测试疫苗的保护作用。

Protocol

动物实验根据实验动物使用和护理手册进行,并得到第三军医大学实验动物福利与伦理委员会的批准。6-8周龄的雌性Balb / c小鼠用于本研究。这些动物是从商业来源获得的(见 材料表)。 1. MRSA HI抗原蛋白的制备 从商业来源获得IsdB和Hla克隆(见材料表),进行聚合酶链反应(PCR)扩增以扩增IsdB和Hla基因,并将…

Representative Results

评估了制备纳米乳液佐剂疫苗的方案以及该疫苗的体外和体内测试。TEM、AFM 和 DLS 用于确定该样品表面 zeta 电位和粒径的重要特征(图 1)。SDS-PAGE和蛋白质印迹显示,离心后沉淀物和上清液中的抗原量未显著降解,表明疫苗结构完整、特异性和免疫原性(图2)。纳米乳佐剂疫苗显著提高了总IgG、IgG1和IgG 2a抗体滴度。疫苗的免疫原性显着?…

Discussion

IsdB是一种细菌细胞壁锚定和铁调节的表面蛋白,在获得血红素铁的过程中起重要作用15Hla,α毒素,是MRSA中已知的最有效的细菌毒素之一,可以在真核细胞中形成孔隙并干扰粘附和上皮细胞16。本研究基于 IsdBHla抗原基因,利用基因工程技术构建并表达新型重组MRSA抗原蛋白(HI)。然后,采用低能量乳化法研制出纳米乳化疫苗,…

Disclosures

The authors have nothing to disclose.

Acknowledgements

本研究由国家重点研发计划2021YFC2302603、国家自然科学基金项目项目32070924号32000651号、重庆市自然科学基金项目项目2019jcyjA-msxmx0159支持。

Materials

5424-Small high speed centrifugeFA-45-24-11 Eppendorf, Germany  5424000495
96-well plates Corning Incorporated, USA CLS3922
AFM Dimension FastScan BRUKER, Germany  null
Alcohol lamp Shenzhen Yibaxun Technology Co.,China YBS-AA-11408
Balb/c mice  Beijing HFK Bioscience Co. Ltd. 
BCIP/NBT Fuzhou Maixin Biotechnology Development Company,China BCIP/NBT
Bio-Rad 6.0 microplate reader Bio-Rad Laboratories Incorporated Limited Co., CA, USA null
BL21 Competent Cell Merck millipore,Germany 70232-3CN
BSA-100G Sigma-Aldrich, USA B2064-100G
Centrifuge 5810 R Eppendorf, Germany  5811000398
Coomassie bright blue G-250 staining solution MIKX,China DB236
Decolorization solution BOSTER,China AR0163-2
Electro-heating standing-temperature cultivator HH-B11-420 Shanghai Yuejin Medical Device Factory, China null
Electrophoresis apparatus Beijing Liuyi Instrument Factory, China DYCZ-25D
Gel image Tanon, USA null
Glutathione-Sepharose Resin GST Mei5bio,China affinity chromatography resin
H2SO4 Chengdu KESHI Chemical Co., LTD,China 7664-93-9
HI recombinant protein Third Military Medical University,China 110-27-0
HRP -Goat Anti-Mouse IgG Biodragon, China BF03001
HRP- Goat anti-mouse IgG1 Biodragon, China BF03002R
HRP- Goat anti-mouse IgG2a Biodragon, China BF03003R
HRP- Goat anti-mouse IgG2b Biodragon, China BF03004R
Inoculation loop Haimen Feiyue Co.,LTD,China YR-JZH-1UL
IsdB and Hla clones Shanghai Jereh Biotechnology Co,China null
Isopropyl nutmeg (pharmaceutic adjuvant) SEPPIC, France null
isopropyl- β-D-1-mercaptogalactopyranoside fdbio,China FD3278-1
LB bouillon culture-medium Beijing AOBOX Biotechnology Co., LTD,China 02-136
Lnfrared physiotherapy lamp Guangzhou Runman Medical Equipment Co.,China 7600
Low temperature refrigerated centrifuge Eppendorf, Germany  null
Malvern NANO ZS Malvern Instruments Ltd., UK null
MH(A) medium Beijing AOBOX Biotechnology Co., LTD,China 02-051
MH(B) medium Beijing AOBOX Biotechnology Co., LTD,China 02-052
Micro plate washing machine 405 LSRS Bio Tek Instruments,Inc Highland  Park,USA null
Mini-TBC Compact Film Transfer Instrument BeiJingDongFangRuiLi Co.,LTD,China 1658030
MMC packing TOSOH(SHANGHAI)CO.,LTD 0022818
MRSA252 USA, ATCC null
Nanodrop ultraviolet spectrophotometer Thermo Scientific, USA null
New FlashTM Protein any KD PAGE Protein electrophoresis gel kit DAKEWE, China 8012011
PBS biosharp, China null
PCR, Amplifier Thermal Cycler, USA null
pGEX-target gene recombinant plasmid Shanghai Jereh Biotechnology Co,China B3528G
Phosphotungstic acid G-CLONE, China CS1231-25g
pipette Eppendorf, Germany  3120000844
polyoxyethylated castor oil (pharmaceutic adjuvant) Aladdin, China K400327-1kg
Primary antibody Laboratory homemade:from immunized mice with positive sera null See Reference 11 for details
propylene glycol (pharmaceutic adjuvant) Sigma-Aldrich, USA P4347-500ML
Protein Marker Thermo Scientufuc, USA 26616
PVDF TRANSFER MEMBRANE Invitrogen,USA 88518
Scanning Electron Microscope JEOL,Japan JSM-IT800
Sodium pentobarbital Merck,Germany Tc-P8411
Talos L120C TEM Thermo Fisher, USA null
TMB color solution TIAN GEN, China PA107-01
Turtle kits Xiamen Bioendo Technology Co.,LTD ES80545
Tween-20 Macklin, China 9005-64-5

References

  1. Cheung, G. Y. C., Bae, J. S., Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 12 (1), 547-569 (2021).
  2. Lakhundi, S., Zhang, K. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clinical Microbiology Reviews. 31 (4), e00020 (2018).
  3. Mancuso, G., Midiri, A., Gerace, E., Biondo, C. Bacterial antibiotic resistance: the most critical pathogens. Pathogens. 10 (10), 1310 (2021).
  4. Goullé, J. P., Grangeot-Keros, L. Aluminum and vaccines: Current state of knowledge. Medecine et Maladies Infectieuses. 50 (1), 16-21 (2020).
  5. Shi, S., et al. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine. 37 (24), 3167-3178 (2019).
  6. Geoghegan, S., O’Callaghan, K. P., Offit, P. A. Vaccine safety: myths and misinformation. Frontiers in Microbiology. 11, 372 (2020).
  7. Pandey, P., Gulati, N., Makhija, M., Purohit, D., Dureja, H. Nanoemulsion: a novel drug delivery approach for enhancement of bioavailability. Recent Patents on Nanotechnology. 14 (4), 276-293 (2020).
  8. Ko, E. J., Kang, S. M. Immunology and efficacy of MF59-adjuvanted vaccines. Human Vaccines & Immunotherapeutics. 14 (12), 3041-3045 (2018).
  9. Chen, B. H., Inbaraj, B. S. Nanoemulsion and nanoliposome based strategies for improving anthocyanin stability and bioavailability. Nutrients. 11 (5), 1052 (2019).
  10. Zuo, Q. F., et al. Evaluation of the protective immunity of a novel subunit fusion vaccine in a murine model of systemic MRSA infection. PLoS One. 8 (12), e81212 (2013).
  11. Sun, H. W., et al. Induction of systemic and mucosal immunity against methicillin-resistant Staphylococcus aureus infection by a novel nanoemulsion adjuvant vaccine. International Journal of Nanomedicine. 10, 7275-7290 (2015).
  12. National Pharmacopoeia Committee. . Chinese Pharmacopoeia. , 1088 (2020).
  13. Kontomaris, S. V., Stylianou, A., Malamou, A. Atomic force microscopy nanoindentation method on collagen fibrils. Materials. 15 (7), 2477 (2022).
  14. Zeng, H., et al. An immunodominant epitope-specific monoclonal antibody cocktail improves survival in a mouse model of Staphylococcus aureus bacteremia. The Journal of Infectious Diseases. 223 (10), 1743-1752 (2021).
  15. Roy, U., Kornitzer, D. Heme-iron acquisition in fungi. Current Opinion in Microbiology. 52, 77-83 (2019).
  16. Saeed, K., et al. Bacterial toxins in musculoskeletal infections. Journal of Orthopaedic Research. 39 (2), 240-250 (2021).
  17. Xu, Q., Zhou, A., Wu, H., Bi, Y. Development and in vivo evaluation of baicalin-loaded W/O nanoemulsion for lymphatic absorption. Pharmaceutical Development and Technology. 24 (9), 1155-1163 (2019).
  18. Singh, Y., et al. Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release. 252, 28-49 (2017).
  19. Kadakia, E., Shah, L., Amiji, M. M. Mathematical modeling and experimental validation of nanoemulsion-based drug transport across cellular barriers. Pharmaceutical Research. 34 (7), 1416-1427 (2017).
  20. Bhattacharjee, S. DLS and zeta potential-What they are and what they are not. Journal of Controlled Release. 235, 337-351 (2016).
  21. Francis, M. J. Recent advances in vaccine technologies. The Veterinary Clinics of North America. Small Animal Practice. 48 (2), 231-241 (2018).
  22. Tripathi, N. K., Shrivastava, A. Recent developments in recombinant protein-based dengue vaccines. Frontiers in Immunology. 9, 1919 (2018).
  23. Wilder-Smith, A. Dengue vaccine development: status and future. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 63 (1), 40-44 (2020).
  24. Korneev, K. V. Mouse models of sepsis and septic shock. Molecular Biology. 53 (5), 799-814 (2019).
check_url/cn/65152?article_type=t

Play Video

Cite This Article
Zeng, X., Sun, H., Ye, Y., Luo, X., Cai, D., Yang, Y., Chen, T., Sun, C., Zhang, S., Zeng, H. Evaluating the Immune Response of a Nanoemulsion Adjuvant Vaccine Against Methicillin-Resistant Staphylococcus aureus (MRSA) Infection. J. Vis. Exp. (199), e65152, doi:10.3791/65152 (2023).

View Video