Summary

使用数字职业培训系统的中风后认知功能和上肢康复训练

Published: December 29, 2023
doi:

Summary

目前的协议概述了基于VR的数字职业培训系统如何增强中风后认知障碍和上肢功能障碍患者的康复。

Abstract

卒中康复通常需要频繁和强化的治疗,以改善功能恢复。虚拟现实 (VR) 技术已显示出通过提供引人入胜和激励性的治疗选择来满足这些需求的潜力。数字职业培训系统是一种VR应用,利用多点触摸屏、虚拟现实、人机交互等前沿技术,为高级认知能力和手眼协调能力提供多样化的训练技术。本研究的目的是评估该计划在增强中风患者认知功能和上肢康复方面的有效性。训练和评估包括五个认知模块,包括感知、注意力、记忆、逻辑推理和计算,以及手眼协调训练。本研究表明,经过八周的训练,数字职业训练系统可以显着改善脑卒中患者的认知功能、日常生活技能、注意力和自理能力。该软件可以用作节省时间和临床有效的康复辅助工具,以补充传统的一对一职业治疗课程。总之,数字职业培训系统显示出前景,并作为支持中风患者功能恢复的工具提供了潜在的经济利益。

Introduction

卒中或脑血管意外的发病率、死亡率、残疾率和复发率都很高1。在全球范围内,脑卒中已超过肿瘤和心脏病成为第二大死因,在中国是主要死因2。随着人口老龄化,预计未来几年中风的发病率和社会负担将显着增加。卒中幸存者可能会继续出现感觉、运动、认知和心理障碍3.中风的影响可能包括身体一侧瘫痪,包括面部、手臂和腿部,这种情况称为偏瘫。这是中风最常见的后遗症,对人们的生活质量有重大影响4.

中风对人们的健康构成重大威胁。由于脑组织损伤,中风和偏瘫可导致手部功能障碍,阻碍患者的日常生活活动 (ADL) 并降低他们的生活质量5.上肢功能下降,尤其是作为身体远端的手部功能下降,是上肢恢复中最重要的挑战6。因此,功能康复至关重要。此外,20%-80% 的中风患者会出现认知障碍,导致注意力、记忆力、语言和执行能力方面的缺陷7.

目前,上肢偏瘫的临床康复主要依靠全面的上肢训练和各种职业治疗(如镜盒治疗8、悬吊术9、功能性电刺激10等)。最近,虚拟现实和交互式视频游戏已成为替代康复方法。这些干预措施可以促进高容量的实践,并减少对治疗师时间的要求11.虚拟现实系统已迅速发展成为新的商业设备,可用于增强中风幸存者的认知和上肢运动功能12。尽管取得了这些进展,但该领域仍有未开发的途径。

因此,本研究旨在调查上肢康复训练联合常规上肢康复对偏瘫恢复期卒中患者认知和上肢运动功能的影响,通常跨越卒中后最初的 6-24 周。此外,我们还将研究它对日常生活能力的影响。本研究旨在为机器人干预的临床应用提供有价值的证据。

Protocol

本研究方案获得浙江大学第一附属医院伦理委员会批准(批准号IIT20210035C-R2),获得所有受试者的知情同意。进行了一项采用半随机化、单盲和对照组的实验研究,以评估该计划的可行性和有效性。邀请浙江大学第一附属医院康复内科病房住院的24名患者参加本实验。纳入标准包括经计算机断层扫描 (CT) 或磁共振成像 (MRI) 确认的中风患者,年龄在 30-75 岁之间,中风后 6-24 周,蒙特利尔认知?…

Representative Results

在这项研究中,招募了 24 名中风后出现上肢功能障碍并伴有各种认知障碍的患者。观察到的认知障碍类型包括健忘症、失认症、执行功能障碍、注意力障碍等。两组在性别、年龄、病程和脑卒中类型方面无统计学意义差异(P > 0.05),详见 表1。实验组使用数字职业训练系统进行上肢康复,与常规治疗相比,FMA-UE14、MoCA13 和 MBI17…

Discussion

实施了虚拟现实康复系统,以支持中风患者的康复,利用最新的多点触摸屏技术来增强培训参与度、沉浸感、互动性和概念化。该系统提供集成视觉、听觉和触觉的交互式上肢运动控制训练。它还包括针对记忆力、注意力、空间感知、计算、手眼协调和虚拟任务的康复训练模块,提供个性化的认知训练。此外,数字康复通过丰富的虚拟日常生活活动 (ADL) 和认知训练来增强认知和上肢恢复<sup cla…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢浙江大学医学院附属第一医院的患者和医护人员在整个研究过程中的支持与合作。

Materials

FlexTable digital occupational training system Guangzhou Zhanghe Intelligent Technology Co., Ltd. Observation on the rehabilitation effect of digital OT cognitive function training on stroke patients with decreased attention function FlexTable digital operation training system uses the latest multi-touch screen technology, virtual reality and human-computer interaction technology, integrates a variety of training methods, and provides digital advanced brain function and hand-eye coordination training
SPSS 25.0 IBM https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-25

References

  1. Feigin, V. L., et al. World stroke organization (wso): Global stroke fact sheet 2022. Int J Stroke. 17 (1), 18-29 (2022).
  2. Liu, G., Cai, H., Leelayuwat, N. Intervention effect of rehabilitation robotic bed under machine learning combined with intensive motor training on stroke patients with hemiplegia. Front Neurorobot. 16, 865403 (2022).
  3. Langhorne, P., Bernhardt, J., Kwakkel, G. Stroke rehabilitation. Lancet. 377 (9778), 1693-1702 (2011).
  4. Feigin, V. L., Lawes, C. M., Bennett, D. A., Barker-Collo, S. L., Parag, V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: A systematic review. Lancet Neurol. 8 (4), 355-369 (2009).
  5. Han, Y., Xu, Q., Wu, F. Design of wearable hand rehabilitation glove with bionic fiber-reinforced actuator. IEEE J Transl Eng Health Med. 10, 2100610 (2022).
  6. Gu, Y., et al. A review of hand function rehabilitation systems based on hand motion recognition devices and artificial intelligence. Brain Sci. 12 (8), 1079 (2022).
  7. Baltaduonienė, D., Kubilius, R., Berškienė, K., Vitkus, L., Petruševičienė, D. Change of cognitive functions after stroke with rehabilitation systems. Translational Neuroscience. 10 (1), 118-124 (2019).
  8. Samuelkamaleshkumar, S., et al. Mirror therapy enhances motor performance in the paretic upper limb after stroke: A pilot randomized controlled trial. Arch Phys Med Rehabil. 95 (11), 2000-2005 (2014).
  9. Xin, T. Effect of suspension-based digit work therapy system training on upper limb motor function in stroke hemiparesis patients. Chinese Journal of Rehabilitation Theory and Practice. 28, 1259-1264 (2022).
  10. Mccabe, J., Monkiewicz, M., Holcomb, J., Pundik, S., Daly, J. J. Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: A randomized controlled trial. Arch Phys Med Rehabil. 96 (6), 981-990 (2015).
  11. Hung, J. W., et al. Comparison of kinect2scratch game-based training and therapist-based training for the improvement of upper extremity functions of patients with chronic stroke: A randomized controlled single-blinded trial. Eur J Phys Rehabil Med. 55 (5), 542-550 (2019).
  12. Cho, K. H., Song, W. K. Robot-assisted reach training with an active assistant protocol for long-term upper extremity impairment poststroke: A randomized controlled trial. Arch Phys Med Rehabil. 100 (2), 213-219 (2019).
  13. Lu, J., et al. Montreal cognitive assessment in detecting cognitive impairment in chinese elderly individuals: A population-based study. J Geriatr Psychiatry Neurol. 24 (4), 184-190 (2011).
  14. Page, S. J., Hade, E., Persch, A. Psychometrics of the wrist stability and hand mobility subscales of the fugl-meyer assessment in moderately impaired stroke. Phys Ther. 95 (1), 103-108 (2015).
  15. Ottosson, A. Signe brunnstrom’s influence on us physical therapy. Physical Therapy. 101 (8), (2021).
  16. Urban, P. P., et al. Occurence and clinical predictors of spasticity after ischemic stroke. Stroke. 41 (9), 2016-2020 (2010).
  17. Duffy, L., Gajree, S., Langhorne, P., Stott, D. J., Quinn, T. J. Reliability (inter-rater agreement) of the barthel index for assessment of stroke survivors: Systematic review and meta-analysis. Stroke. 44 (2), 462-468 (2013).
  18. Bao, X., et al. Mechanism of kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke. Neural Regen Res. 8 (31), 2904-2913 (2013).
  19. Henderson, A., Korner-Bitensky, N., Levin, M. Virtual reality in stroke rehabilitation: A systematic review of its effectiveness for upper limb motor recovery. Top Stroke Rehabil. 14 (2), 52-61 (2007).
  20. Faria, A. L., Andrade, A., Soares, L., Sb, I. B. Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: A randomized controlled trial with stroke patients. J Neuroeng Rehabil. 13 (1), 96 (2016).
  21. Chien, W. T., Chong, Y. Y., Tse, M. K., Chien, C. W., Cheng, H. Y. Robot-assisted therapy for upper-limb rehabilitation in subacute stroke patients: A systematic review and meta-analysis. Brain Behav. 10 (8), e01742 (2020).
  22. Zhang, L., Jia, G., Ma, J., Wang, S., Cheng, L. Short and long-term effects of robot-assisted therapy on upper limb motor function and activity of daily living in patients post-stroke: A meta-analysis of randomized controlled trials. J Neuroeng Rehabil. 19 (1), 76 (2022).
  23. Lu, C., Hua, The effects of digital cognitive training in occupational therapy on cognition, upper limb movement, and activities of daily living in stroke patients. Modern Medicine. 47, 373-376 (2019).
  24. Yun, S. J., et al. Cognitive training using fully immersive, enriched environment virtual reality for patients with mild cognitive impairment and mild dementia: Feasibility and usability study. JMIR Serious Games. 8 (4), 18127 (2020).
  25. Kim, W. S., et al. Clinical application of virtual reality for upper limb motor rehabilitation in stroke: Review of technologies and clinical evidence. J Clin Med. 9 (10), 3369 (2020).
  26. Høeg, E. R., et al. System immersion in virtual reality-based rehabilitation of motor function in older adults: A systematic review and meta-analysis. Frontiers in Virtual Reality. 2, 39-56 (2021).
  27. Bevilacqua, R., et al. Non-immersive virtual reality for rehabilitation of the older people: A systematic review into efficacy and effectiveness. Journal of Clinical Medicine. 8 (11), 1882 (2019).
check_url/cn/65994?article_type=t

Play Video

Cite This Article
Yao, Z., Zhang, T., Chen, F., Shi, W., zheng, J., Zhang, Z., Chen, Z. Cognitive Function and Upper Limb Rehabilitation Training Post-Stroke Using a Digital Occupational Training System. J. Vis. Exp. (202), e65994, doi:10.3791/65994 (2023).

View Video