Summary

路西法黄 - 人类血脑屏障细胞模型中一个健壮的细胞渗透标记

Published: August 19, 2019
doi:

Summary

我们提出了荧光测定,以证明Lucifer黄色(LY)是一个强大的标记,以确定hCMEC/D3细胞单层的明显准细胞渗透性,人类血脑屏障的体外模型。我们使用这种测定来确定培养的hCMEC/D3细胞中汇体单层形成的动力学。

Abstract

血脑屏障BBB由内皮细胞组成,在全身循环和大脑之间形成屏障,防止非必需离子和有毒物质的交换。紧密的结(TJ)有效地密封了单层中的准细胞空间,从而产生了完整的屏障。本研究描述了一种基于LY的荧光测定,可用于确定其表观渗透系数(P应用),进而可用于确定连接单层形成的动力学和由此产生的紧密结hCMEC/D3 单层的屏障完整性。我们进一步演示了此测定的另一个效用,以确定转染细胞中的TJ功能完整性。我们从LY P应用测定数据显示,在跨井设置中播种的hCMEC/D3细胞有效地限制了LY准细胞传输7天后培养。作为所呈现的测定的另一个效用,我们还证明了DNA纳米粒子转染不会改变hCMEC/D3单层中的LY准细胞传输。

Introduction

血脑屏障(BBB)是限制血浆成分流入脑组织的保护屏障,由脑内皮细胞和围细胞等辅助细胞组成。BBB的主要作用是作为屏障,密封外周血和中枢神经系统(CNS)之间的空间,以保持神经微环境1,2的血缘。脑毛细管内皮细胞通过形成细胞间紧密结(TJs)1有效密封准细胞通路。这种保护屏障允许葡萄糖和选定的营养物质进入大脑,同时防止大多数离子、有毒物质和药物通过这个紧密的屏障。除了保护作用外,BBB的天然屏障功能对开发针对CNS的药物输送系统提出了严峻的挑战。

BBB的体外细胞培养模型是研究其生物学和了解药物治疗对TJ屏障完整性影响的有用工具。我们使用人脑微血管内皮细胞系(hCMEC/D3)作为体外模型,因为它是人脑内皮3的公认模型,并重述了人类BBB的许多功能。hCMEC/D3是最常见的细胞系之一,用于在体外4、5、6、7、8、9对BBB进行建模。尽管这种细胞系的跨端电阻值相对较低,是阻隔性紧度的一个指标,但该细胞系保留了大脑内皮细胞的大部分形态和功能特性,即使在没有共培养的胶质细胞6,7。hCMEC/D3细胞系表示多个BBB标记,包括活性转运体和受体,直到大约通过35,而不经过分化到不稳定的表型6,7,9 1011.hCMEC/D3细胞系作为体外BBB模型最显著的特征是能够形成TJs5,9,11,12。应该指出的是,虽然干细胞衍生的BBB模型在许多研究中表现出更高的渗透性,与hCMEC/D3细胞系相比,他们确实表达了一些BBB标记,但它们尚未演变为最常见的BBB细胞模型13。重要的是,干细胞衍生的BBB模型仍然具有最大通道数的特征,使细胞能够保持稳定的BBB表型14。

三种主要方法通常用于确定TJ阻隔完整性,包括TEER的测量,测量小亲水性示踪分子(P应用)的表观渗透系数(P应用),如蔗糖、黄素、路西法黄、等和免疫染色的已知分子标记的TJ,如克劳丁-5,ZO-1,卡他丁等5。TEER是一种相对简单和定量的方法,用于测量在多孔膜基板上培养的细胞单层的电阻。但是,TEER 值可能受实验变量(如培养介质的组成和测量仪器的类型)的影响。这些因素的可能组合导致在 hCMEC/D3 细胞系中广泛分布 TEER 值,范围从2 到 1150 Ω cm 2,培养2-21天13。免疫染色是一种视觉方法,通过使用抗体标记靶向蛋白来确定TJ蛋白的存在。然而,免疫染色涉及一系列实验步骤,包括需要修复/渗透可能导致实验伪影的细胞,荧光信号可能会随着时间的推移而消退。上述因素可能导致主观错误影响数据质量。

这项工作的主要重点是提出基于LY的表观渗透性测定,以确定培养的hCMEC/D3细胞中汇体单层形成的动力学。虽然其他先进的体外BBB系统,如共培养系统,微流体系统,是生理上更相关的模拟与显著改善屏障功能15,16,17,hCMEC/D3横井设置是一个简单可靠的模型,用于估计TJ形成的动力学,并快速筛选不同药物制剂对阻隔功能的影响。通常,P应用值对于 hCMEC/D3 单层中的各种亲水溶性溶质是一致的。例如,报告不同体外BBB模型中各种低分子质量溶质(如蔗糖、曼尼醇、LY等)的P应用值在10-4厘米/分钟5,18,19 ,在我们的实验设置中,大脑内皮细胞被播种在胶原蛋白涂层的微孔膜上,用于细胞附着和单层形成,以模仿体内屏障。在圆锥侧添加的LY预计将穿过细胞间紧密结,并在巴索侧累积。巴利侧LY浓度越大,表明存在不成熟、功能不全的屏障,而较低的浓度则反映了由于功能性TJs的存在导致成熟的屏障而导致运输受限。

LY 是一种亲水染料,具有明显的激发/发射峰值,无需放射性标签示踪分子,如蔗糖、曼尼醇或乌林。因此,LY的荧光值可用于直接计算其在BBB单层上的准细胞渗透性。此外,与许多用于生物医学领域的商业染料,遭受小斯托克斯变化,如荧光21,斯托克斯转移LY是约108nm有足够的光谱分离,从而允许LY荧光数据作为强健的读出,以确定副细胞渗透性。我们使用西方印迹作为正交技术来演示紧密结标记蛋白 ZO-1 在培养时间中表达的变化。通过西方印迹检测到的ZO-1表达式用于补充LY P应用数据,并结合这些数据表明,在LY P应用值中观察到的变化反映了单层的形成,并逐渐增加紧密交汇点标记 ZO-1 的表达式。

如前所述,这项工作的中心重点是演示LY测定作为一种简单的技术,以监测具有功能紧密结的交汇单层的形成。然而,为了证明所开发检测的另一个效用,我们测量了DNA纳米粒子转染hCMEC/D3单层中的LY P应用。核酸可以通过带正电荷的聚合物组与核酸的负电荷磷酸盐组之间的静电相互作用,浓缩成直径为100-200nm的聚电解质纳米颗粒。23.在我们的工作中,我们将这些复合物称为DNA纳米粒子(DNA NPs)。虽然我们的目的是转染细胞和表达所需的蛋白质,但我们必须确保 hCMEC/D3 单层的屏障特性不会受到损害。我们的数据表明,标准的4 h荧光酶基因转染机制不能显著改变LY渗透性,证明LY P应用测定的效用,以确定TJ屏障完整性的变化。

Protocol

1.一般 hCMEC/D3 细胞培养 冷冻细胞的复苏注:所有细胞培养维护和实验均在无菌生物安全罩内进行。培养培养剂、补充剂和试剂要么作为无菌产品购买,要么通过过滤使用0.22 μm膜过滤器进行灭菌,以防止微生物污染。 在组织培养瓶中加入8.5 mL的胶原蛋白溶液(0.15mg/mL)(75cm2生长面积;以后称为T75),并将其放入培养箱(37°C,5%CO2)1小时。 取…

Representative Results

首先,我们确定了培养时间对LY渗透性的影响,以确定TJ形成的表观动力学。从第 1 天到 10 天后种子的均值 LY P应用值如图2a所示。在第 1 天,平均 P应用为 4.25 x 10-4厘米/分钟,第 2 天略降至 3.32 x 10-4厘米/分钟。平均 P应用值在第 3 天略微增加到 3.93 x 10-4厘米/分钟,直到第 6 天才出现显著变化。与第 1 …

Discussion

BBB的一个关键作用是防止非必需离子和有毒物质在系统循环和大脑之间交换,以保持神经微环境的四分法。BBB 的一个特征是毛细管内皮细胞能够形成紧密的结(TJs),从而有效密封半细胞运输路线。我们演示了一种LY P应用测定作为定量方法,以确定培养hCMEC/D3单层中TJ阻隔形成表动力学。通过西方印迹正交检测的 ZO-1 表达式验证了 LY P应用研究中的数据,详于下一段所述。作为已?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

作者感谢美国药学协会2017年新调查员奖、杜克斯内大学亨克勒恐惧病奖和Manickam实验室药学院启动基金的财政支持。我们要感谢泄漏实验室(杜克斯纳大学)的西方印迹援助,并允许使用他们的奥德赛16位成像仪。我们还要特别感谢坎达普·戴夫(Manickam实验室)对西方印迹的帮助。

Materials

hCMEC/D3 cell line Cedarlane Laboratories 102114.3C-P25 human cerebral microvascular endothelial cell line 
gWizLuc Aldevron  5000-5001 Plasmid DNA encoding luciferase gene
lucifer yellow CH dilithium salt  Invitrogen 155267
Transwell inserts with polyethylene terephthalate (PET) track-etched membranes Falcon 353095
Tissue culture flask  Olympus Plastics 25-207
24-well Flat Bottom  Olympus Plastics 25-107
Black 96-Well Immuno Plates  Thermo Scientific 437111
S-MEM 1X Gibco 1951695 Spinner-minimum essential medium (S-MEM)
EBM-2 Clonetics CC-3156 Endothelial cell basal medium-2(EBM-2) 
phosphate-buffered saline 1X HyClone SH3025601
Collagen Type I  Discovery Labware, Inc. 354236
Pierce BCA Protein Assay Kit  Thermo Scientific 23227
Cell Culture Lysis 5X Reagent  Promega E1531
Beetle Luciferin, Potassium Salt  Promega E1601
SpectraMax i3  Molecular Devices Fluorescence Plate Reader
Trypan Blue Solution, 0.4% Gibco 15250061
ZO-1 Polyclonal Antibody  ThermoFisher 61-7300
anti-GAPDH antibody abcam ab8245
Alexa Fluor680-conjugated AffiniPure Donkey Anti-Mouse LgG(H+L) Jackson ImmunoResearch Inc 128817
12-well, Flat Bottom Olympus Plastics 25-106
RIPA buffer (5X) Alfa Aesar J62524
Aprotinin Fisher BioReagents BP2503-10
Odyssey CLx imager LI-COR Biosciences for scanning western blot membranes

Referenzen

  1. Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R., Begley, D. J. Structure and function of the blood-brain barrier. Neurobiology Of Disease. 37 (1), 13-25 (2010).
  2. Griep, L. M., et al. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomedical Microdevices. 15 (1), 145-150 (2013).
  3. Camos, S., Mallolas, J. Experimental models for assaying microvascular endothelial cell pathophysiology in stroke. Molecules. 15 (12), 9104-9134 (2010).
  4. Cucullo, L., et al. Immortalized human brain endothelial cells and flow-based vascular modeling: a marriage of convenience for rational neurovascular studies. Journal of Cerebral Blood Flow & Metabolism. 28 (2), 312-328 (2008).
  5. Wolff, A., Antfolk, M., Brodin, B., Tenje, M. In vitro Blood-Brain Barrier Models-An Overview of Established Models and New Microfluidic Approaches. Journal of Pharmaceutical Sciences. 104 (9), 2727-2746 (2015).
  6. Weksler, B., Romero, I. A., Couraud, P. O. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids and Barriers of the CNS. 10 (1), 16 (2013).
  7. Ohtsuki, S., et al. Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood-brain barrier model. Molecular Pharmaceutics. 10 (1), 289-296 (2013).
  8. Tornabene, E., Brodin, B. Stroke and Drug Delivery–In vitro Models of the Ischemic Blood-Brain Barrier. Journal of Pharmaceutical Sciences. 105 (2), 398-405 (2016).
  9. Weksler, B., Romero, I. A., Couraud, P. O. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids and Barriers of the CNS. 10 (1), 16 (2013).
  10. Llombart, V., et al. Characterization of secretomes from a human blood brain barrier endothelial cells in-vitro model after ischemia by stable isotope labeling with aminoacids in cell culture (SILAC). Journal of Proteomics. 133, 100-112 (2016).
  11. Weksler, B. B., et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. The FASEB Journal. 19 (13), 1872-1874 (2005).
  12. Avdeef, A. How well can in vitro brain microcapillary endothelial cell models predict rodent in vivo blood-brain barrier permeability?. European Journal of Pharmaceutical Sciences. 43 (3), 109-124 (2011).
  13. Rahman, N. A., et al. Immortalized endothelial cell lines for in vitro blood-brain barrier models: A systematic review. Brain Research. 1642, 532-545 (2016).
  14. Cecchelli, R., et al. A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells. PLoS One. 9 (6), e99733 (2014).
  15. Shao, X., et al. Development of a blood-brain barrier model in a membrane-based microchip for characterization of drug permeability and cytotoxicity for drug screening. Analytica Chimica Acta. 934, 186-193 (2016).
  16. Walter, F. R., et al. A versatile lab-on-a-chip tool for modeling biological barriers. Sensors and Actuators B: Chemical. 222, 1209-1219 (2016).
  17. Cecchelli, R., et al. In vitro model for evaluating drug transport across the blood–brain barrier. Advanced Drug Delivery Reviews. 36, (1999).
  18. Cecchelli, R., et al. Modelling of the blood–brain barrier in drug discovery and development. Nature reviews Drug discovery. 6 (8), 650 (2007).
  19. Reichel, A., Begley, D. J., Abbott, N. J. . The Blood-Brain Barrier. , 307-324 (2003).
  20. Deli, M. A., Ábrahám, C. S., Kataoka, Y., Niwa, M. Permeability Studies on In vitro Blood–Brain Barrier Models: Physiology, Pathology, and Pharmacology. Cellular and Molecular Neurobiology. 25 (1), 59-127 (2005).
  21. Ren, T. B., et al. A General Method To Increase Stokes Shift by Introducing Alternating Vibronic Structures. Journal of the American Chemical Society. 140 (24), 7716-7722 (2018).
  22. Pack, D. W., Hoffman, A. S., Pun, S., Stayton, P. S. Design and development of polymers for gene delivery. Nature Reviews Drug Discovery. 4 (7), 581-593 (2005).
  23. Oupický, D., Konák, C., Ulbrich, K., Wolfert, M. A., Seymour, L. W. DNA delivery systems based on complexes of DNA with synthetic polycations and their copolymers. Journal of Controlled Release. 65, (2000).
  24. Couraud, P. O. . The hCMEC/D3 CELL LINE: IMMORTALIZED HUMAN CEREBRAL MICROVASCULAR ENDOTHELIAL CELLS As a model of human Blood-Brain Barrier. , (2012).
  25. Youdim, K. u. r. e. s. h. A., A, A. A. a. N. J. In vitro trans-monolayer permeability calculations: often forgotten assumptions. research focus reviews. 8, (2003).
  26. Eigenmann, D. E., Xue, G., Kim, K. S., Moses, A. V., Hamburger, M., Oufir, M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies. Fluid and Barriers of the CNS. 10 (33), (2013).
  27. Hubatsch, I., Ragnarsson, E. G. E., Artursson, P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nature Protocols. 2 (9), 2111-2119 (2007).
  28. Balda, M. S., Anderson, J. M. Two classes of tight junctions are revealed by ZO-1 isoforms. The American Physiological Society. , (1992).
  29. Brown, R. C., Davis, T. P. Calcium Modulation of Adherens and Tight Junction Function: A Potential Mechanism for Blood-Brain Barrier Disruption After Stroke. Stroke. 33 (6), 1706-1711 (2002).
  30. Gorodeski, G., Jin, W., Hopfer, U. Extracellular Ca2+ directly regulates tight junctional permeability in the human cervical cell line CaSki. American Journal of Physiology-Cell Physiology. 272 (2), C511-C524 (1997).
  31. Stuart, R. O., Sun, A., Panichas, M., Hebert, S. C., Brenner, B. M., Nigam, S. K. Critical Role for lntracellular Calcium in Tight Junction Biogenesis. Journal of Cellular Physiology. 159, (1994).
  32. Tobey, N. A. Calcium-switch technique and junctional permeability in native rabbit esophageal epithelium. American Journal of Physiology-Gastrointestinal and Liver Physiology. , (2004).
  33. Tobey, N. A., Argote, C. M., Hosseini, S. S., Orlando, R. C. Calcium-switch technique and junctional permeability in native rabbit esophageal epithelium. American Journal of Physiology-Gastrointestinal and Liver Physiology. 286, (2004).
  34. Posimo, J. M., et al. Viability assays for cells in culture. Journal of visualized experiments : JoVE. (83), e50645 (2014).
  35. Cipolla, M. J., Crete, R., Vitullo, L., Rix, R. D. Transcellular transport as a mechanism of blood-brain barrier disruption during stroke. Frontiers in Bioscience. 9 (3), 777-785 (2004).
  36. Kreuter, J. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. Journal of nanoscience and nanotechnology. 4 (5), 484-488 (2004).
  37. Markoutsa, E., et al. Uptake and permeability studies of BBB-targeting immunoliposomes using the hCMEC/D3 cell line. European Journal of Pharmaceutics and Biopharmaceutics. 77 (2), 265-274 (2011).
check_url/de/58900?article_type=t

Play Video

Diesen Artikel zitieren
Zhao, W., Han, L., Bae, Y., Manickam, D. S. Lucifer Yellow – A Robust Paracellular Permeability Marker in a Cell Model of the Human Blood-brain Barrier. J. Vis. Exp. (150), e58900, doi:10.3791/58900 (2019).

View Video