Summary

巴西寄生体加纳 斯菌的饲养方法,这是一种有前途的生物控制剂,用于侵入性 铃木果蝇

Published: June 02, 2022
doi:

Summary

巴西果蝇是铃木果蝇(一种全球入侵性水果作物害虫)的幼虫寄生虫,已被批准或考虑引入欧洲和美国,用于生物控制该害虫。本文提供了这种寄生虫的小规模和大规模饲养方案。

Abstract

斑点翅果蝇原产于东亚,松村 果蝇 (Matsumura)(双翅目:果蝇科)在过去十年中在美洲,欧洲和非洲部分地区广泛建立,成为入侵地区各种软皮水果的毁灭性害虫。生物控制,特别是通过自我延续和特化的寄生虫进行控制,预计将成为对这种高度移动性和多食性害虫进行可持续全区域管理的可行选择。 巴西甘纳斯皮斯 Ihering(膜翅目:Figitidae)是一种广泛分布在东亚的幼虫寄生虫,已被发现是 铃木杜鹃最有效的寄生虫之一。

在对其功效和潜在的非靶向风险进行严格的引入前评估之后,该物种的一个更具有宿主特异性的遗传群体(G1 G. Brasiliensis)最近已被批准在美国和意大利引入和田间释放。另一个遗传群体(G3 G. Brasiliensis)在东亚也很常见,也经常被发现攻击 铃木猪笼草 ,可能会考虑在不久的将来引入。目前,人们对饲养 巴西猪笼草 进行研究或大规模生产以针对 铃木猪笼草的田间释放有着浓厚的兴趣。该协议和相关视频文章描述了这种寄生虫的有效饲养方法,既可以小规模地用于研究,也可以大规模地用于大规模生产和现场释放。这些方法可能有利于进一步的长期研究和使用这种亚洲本地寄生虫作为这种全球入侵害虫的有前途的生物控制剂。

Introduction

原产于东亚的斑点翅果蝇,铃木果蝇(松村果蝇)(双翅目:果蝇科),已在美洲,欧洲和非洲部分地区广泛建立12。苍蝇是极其多食性的,能够利用其原生和入侵地区123中各种具有柔软和薄皮的栽培和野生水果。目前对这种害虫的管理策略严重依赖于在易感水果成熟时频繁使用针对农田中成年苍蝇的杀虫剂。经常使用重复喷洒,可能是由于水库苍蝇种群从非作物栖息地不断溢出,以及缺乏居住在被入侵地区的有效天敌14。生物控制,特别是通过自我延续的特化寄生虫,可能有助于在景观水平上抑制苍蝇种群,并在可持续地管理这种高度移动性和多食性害虫的全区域范围内发挥关键作用456

在过去的十年中,研究人员一直致力于在东亚789的苍蝇原生范围内发现铃木果蝇的共同进化寄生虫,以及在美洲和欧洲456的苍蝇入侵地区有效但新关联的寄生虫。在苍蝇新入侵的地区,常见的幼虫果蝇寄生虫,如阿索巴拉c.f.塔比达(Nees)(膜翅目:布拉科),胭脂虫(巴博廷等人)和异体乳杆菌(汤普森)(膜翅目:Figitidae),由于苍蝇的强烈免疫抵抗力无法从铃木上的寄生虫发育或具有低寄生虫水平。只有一些世界性和通才的蛹类寄生虫,如长春花(Rondani)(膜翅目:翼手目)和果蝇(Perkins)(膜翅目:Diapriidae),以及南美洲的利马毛滴虫可以很容易地从这种苍蝇中发展出来 4.相比之下,在东亚的探索已经从铃木456中发现了许多幼虫寄生虫。其中,阿索巴拉粳稻贝洛科贝利斯基,巴西加那斯皮斯日本粳稻诺夫科维奇和木村幼虫是主要的幼虫寄生虫78911。特别是,两种无花果体(稻和巴西猪笼草)是主要在天然植被中由铃木猪笼草和/或其他密切相关的果蝇感染的新鲜水果中发现的主要寄生虫789。这三种亚洲幼虫寄生虫被输入到美国和欧洲的检疫设施,并评估了其相对效率121314151617,气候适应性18,潜在的种间竞争相互作用19,最重要的是宿主特异性8202122.

检疫评估显示,与其他测试的亚洲幼虫寄生虫相比,巴西果蝇对铃木果蝇的宿主特异性更高,尽管它可能由不同的生物型或具有不同宿主特异性的神秘物种组成821,222324。Nomano等人根据对线粒体细胞色素氧化酶I基因片段的分子分析,将来自不同地理区域的Ganaspis个体分为五个遗传组(命名为G1-G5)。据报道,G2 和 G4 组仅来自少数南亚热带地区,而 G5 组的报告来自亚洲和其他地区(例如阿根廷、巴西、夏威夷和墨西哥),其宿主不明(Buffington,个人观察)。在韩国7,中国8和日本92325中,铃木猪笼草侵扰的野生水果的野外收集物单独发现或代表G1和G3组的标本混合物。这两个群体似乎是对称的,并且共存于铃木猪和其他密切相关的寄主蝇居住的同一寄主植物上。尽管如此,两组之间已经观察到一些差异,G1似乎比G3对铃木D.具有更高程度的宿主或宿主栖息地特异性,尽管它们在检疫测试21,22中都攻击了许多密切相关的物种。进一步详细的分子分析可能有助于确定物种状态,特别是对于G1和G3组。这项研究将它们称为G1 G.巴西菌和G3 G. 巴西菌。一些早期的研究也将G1 G. 巴西莲命名为G。 参见巴西142122。G1 G. 巴西蜥蜴最近被批准在美国和意大利(其他几个欧洲国家目前正在考虑引入)对铃木乌贼进行田间释放,而G3巴西鳞毛蕨可能考虑在不久的将来进行田间释放。最近的调查还发现,在加拿大不列颠哥伦比亚省26和美国华盛顿州,稻和G1 G. Brasiliensis的偶然种群(Beers等人,未发表的数据),以及意大利特伦托省的粳稻柳叶杆菌种群27

鉴于对制定 铃木果蝇 管理的生物控制方案的极大兴趣,以及偶然和故意引入 巴西果蝇的巨大生物控制潜力,有必要为这种幼虫寄生虫开发有效的饲养方法,以便今后进行长期研究和/或田间释放。该协议和相关视频文章描述了这种寄生虫的两套饲养方法:(1)使用宿主果实(蓝莓)和人造饲料的混合物在烧瓶中进行小规模实验室饲养,以培养 铃木杜鹃。这些方法是使用最初从中国明收集的G3材料开发的。(2)使用寄主果实(蓝莓)进行大规模养殖,以便在大型网箱中放牧 ,用于铃木杜鹃的养殖。用于大规模养殖的遗传组是原产于日本东京的G1种群922。还简要讨论了其他规模的饲养方法,例如为两组使用小瓶或小容器。

Protocol

1. 巴西G3甘草小规模实验室饲养方法 准备主人的饮食。 将600 mL蒸馏水加入1,500 mL玻璃容器中,并在热板上加热水。 加入88.6克市售干粮(由琼脂,啤酒酵母,玉米粉,对羟基苯甲酸甲酯和蔗糖制成)或使用道尔顿等人发表的配方准备饮食28 (见步骤2.1.2)。 在干粮中加入300毫升蒸馏水,并彻底搅拌饮食混合物。 将混合物…

Representative Results

图4 显示了在美国农业部-阿根廷 红新月会益虫 引进处(特拉华州纽瓦克)检疫设施中使用两种不同的寄生虫密度(6对或10对)和两种不同的暴露时间(5或10天)对巴西G3 Ganaspis进行小规模实验室饲养的代表性结果。寄生虫密度和暴露时间的每种组合有14次重复。总共有64个烧瓶生产了4,018只黄蜂(每瓶71.7±4.9个后代),其中49.5%±1.9%的雌性后代。在21°C时,成虫寄生虫…

Discussion

生物控制剂的长期研究和随后的田间释放取决于有效和经济的饲养技术的可用性。本研究中描述的方法已被证明是小规模和大规模饲养 巴西加纳斯皮斯的有效方案。小规模饲养方案已经开发了几年,以优化劳动力并减少同时维持寄生虫和宿主菌落所需的专用设备。它适用于维持实验室研究或生物测定的菌落。作者已经使用类似的方法来饲养这种寄生虫,用于隔离评估这种寄生虫。大规模饲…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

作者感谢卢卡斯·西豪森和马克·肯尼斯(CABI,瑞士)善意地提供了G1 G. 巴西。意大利的资金由意大利特伦托的特伦托自治省提供,在美国由国家粮食及农业研究所提供,美国农业部特种作物研究计划奖(#2020-5118-32140),美国农业部动植物卫生检查局(农业法案,基金14-8130-0463)和美国农业部ARS CRIS基本基金(项目8010-22000-033-00D)。美国农业部是机会均等的提供者和雇主,不认可本出版物中提到的产品。

Materials

Active dry yeast Fleischmanns Yeast, Cincinatti, OH, USA None Used to cover fruit to reduce mold growth and enhance the frui attraction to the flies
Bacteriological agar Merk Life Science S.r.l., Milan, Italy A1296 – 5KG Used to prepare the Standard Drosophila Medium
Bleach solution Clorox Company, Oakland, CA, USA None Used to disinfect flesh fruit
Blue stopper Azer Scientific, Morgantown, PA, USA ES3837 Used for sealing the tube while allowing ventilation for insects
Blueberries Grocery Store, Newark, DE, USA None Provided as host fruit for the flies (various other fruit can also be used)
BugDorm insect rearing cage (W24.5 x D24.5 x H63.0 cm) Mega View Science Co. Ltd., Taichung, Taiwan 4E3030 Used for rearing parasitoids (parasitism cage)
BugDorm insect rearing cage (W32.5 x D32.5 x H32.5 cm) Mega View Science Co. Ltd., Taichung, Taiwan 4E4590 Used for rearing flies
BugDorm insect rearing cage (W32.5 x D32.5 x H32.5 cm) Mega View Science Co. Ltd., Taichung, Taiwan 4E4545 Used for rearing parasitoids (eclosion cage)
Chicken wire (0.64 cm, 19 gauge) Everbilt, OH, USA 308231EB Used to lift up the fruit to allow maximum parasitoid oviposition
Cornmeal Grocery Store, Trento, TN, Italy None Used to prepare the Standard Drosophila Medium
Dental cotton roll (1 x 3.8 cm) Gima S.p.A., Gessate, MI, Italy 35000 Used for providing water to the parasitoids within the storage container
Drosophila diet Frontier Scientific, Newark, DE, USA TF1003 Custom diet used to rear flies
Drosophila vial narrow, Polystirene (2.5 x 9.5 cm) VWR International, LLC., Radnor, PA, US 75813-160 Used for providing water to the parasitoids within the cage
Drosophila vial plugs, Cellulose acetate (2.5 cm) VWR International, LLC., Radnor, PA, US 89168-886 Used for providing water to the parasitoids within the cage
Erlenmeyer flask (250 mL) Carolina Biological, Burlington, NC, USA 731029 Used for rearing flies and parasitoids
Falcon-style centrifuge tube (50 mL) VWR International, LLC., Radnor, PA, US VWRI525-0611 Modified to ship adult parasitoids
Foam stopper Jaece Industries, North Tanawanda, NY, USA L800-C Used for sealing the flasks while allowing ventilation for insects
Honey Grocery Store, Newark, DE, USA None Provided as food for parasitoids
Identi-Plug plastic foam stopper Fisher Scientific Company, L.L.C., Pittsburg, PA, US 14-127-40E Used as feeder for parasitoids and to seal the storage container
Industrial paper towel Grocery Store, Newark, DE, USA None Provided as a pupation substrate for pupae and mitigated moisture
Micron mesh fabric (250 mL) Industrial Netting, Maple Grove, MN, USA WN0250-72 Used to make ventilation lid for insects
Nutritional yeast (flakes) Grocery Store, Trento, TN, Italy None Used to prepare the Standard Drosophila Medium
Paper coaster (10.2 cm) Hoffmaster, WI, USA 35NG26 Porvided as pupation substrate for flies and parsitized pupae
Plastic cup (Ø 13.3 cm, 800 mL) Berry Superfos, Taastrup, Denmark Unipak 5134 Modified to store adult parasitoids
Plastic lid (Ø 13.3 cm) Berry Superfos, Taastrup, Denmark PP 2830 Modified to store adult parasitoids
Propionic acid Merk Life Science S.r.l., Milan, Italy P1386 – 1L Used to prepare the Standard Drosophila Medium
Saccharose Grocery Store, Trento, TN, Italy None Used to prepare the Standard Drosophila Medium
Soup cup with lid (475 mL) StackMan, Vietnam DC1648 Used for parasitized larvae to pupate
Soybean flour Grocery Store, Trento, TN, Italy None Used to prepare the Standard Drosophila Medium
White felt washer (0.64 cm thick, 5 mm ID x 20 mm OD) Quiklok, Lincoln, NH, US WFW/.25 x 5 x 20 mm Used as feeding ring for parasitoids

Referenzen

  1. Asplen, M. K., et al. Invasion biology of spotted wing drosophila (Drosophila suzukii): a global perspective and future priorities. Journal of Pest Science. 88 (3), 469-494 (2015).
  2. Tait, G., et al. Drosophila suzukii (Diptera: Drosophilidae): A decade of research towards a sustainable integrated pest management program. Journal of Economic Entomology. 114 (5), 1950-1974 (2021).
  3. Kirschbaum, D. S., Funes, C. F., Buonocore-Biancheri, M. J., Suárez, L., Ovruski, S. M., Garcia, F. R. M. The biology and ecology of Drosophila suzukii (Diptera: Drosophilidae). Drosophila suzukii management. , 41-92 (2020).
  4. Wang, X. G., Lee, J. C., Daane, K. M., Buffington, M. L., Hoelmer, K. A. Biological control of Drosophila suzukii. CAB Reviews. 15, 054 (2020).
  5. Lee, J. C., et al. Biological control of spotted-wing drosophila (Diptera: Drosophilidae): Current and pending tactics. Journal of Integreated Pest Management. 10 (1), 13 (2019).
  6. Wang, X. G., Lee, J. C., Daane, K. M., Hoelmer, K. A., Garcia, F. R. M. Biological control of spotted-wing drosophila: An update on promising agents. Drosophilia suzukii management. , 143-167 (2020).
  7. Daane, K. M., et al. First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents. Journal of Pest Science. 89 (3), 823-835 (2016).
  8. Giorgini, M., et al. Exploration for native parasitoids of Drosophila suzukii in China reveals a diversity of parasitoid species and narrow host range of the dominant parasitoid. Journal of Pest Science. 92 (2), 509-522 (2019).
  9. Girod, P., et al. The parasitoid complex of D. suzukii and other fruit feeding Drosophila species in Asia. Scientific Reports. 8 (1), 11839 (2018).
  10. Kacsoh, B. Z., Schlenke, T. A. High hemocyte load is associated with increased resistance against parasitoids in Drosophila suzukii, a relative of D. melanogaster. PLoS ONE. 7 (4), 34721 (2012).
  11. Buffington, M. L., Forshage, M. Redescription of Ganaspis brasiliensis (Ihering, 1905), new combination (Hymenoptera: Figitidae), a natural enemy of the invasive Drosophila suzukii (Matsumura, 1931)(Diptera: Drosophilidae). Procedings of the Entomoogical Society of Washington. 118 (1), 1-13 (2016).
  12. Biondi, A., et al. Innate olfactory responses of Asobara japonica (Hymenoptera: Braconidae)towards fruits infested by the invasive spotted wing drosophila. Journal of Insect Behavior. 30 (5), 495-506 (2017).
  13. Biondi, A., Wang, X. G., Daane, K. M. Host preference of three Asian larval parasitoids to closely related Drosophila species: implications for biological control of Drosophila suzukii. Journal of Pest Science. 94 (2), 273-283 (2021).
  14. Girod, P., Rossignaud, L., Haye, T., Turlings, T. C. J., Kenis, M. Development of Asian parasitoids in larvae of Drosophila suzukii feeding on blueberry and artificial diet. Journal of Applied Entomology. 142 (5), 483-494 (2018).
  15. Wang, X. G., Nance, A. H., Jones, J. M. L., Hoelmer, K. A., Daane, K. M. Aspects of the biology and reproductive strategy of two Asian larval parasitoids evaluated for classical biological control of Drosophila suzukii. Biological Control. 121, 58-65 (2018).
  16. Wang, X. G., Biondi, A., Daane, K. M. Functional responses of three candidate Asian larval parasitoids evaluated for classical biological control of Drosophila suzukii. Journal of Economic Entomology. 113 (1), 73-80 (2020).
  17. Wang, X. G., et al. Assessment of Asobara japonica as a potential biological control agent for the spotted wing drosophila, Drosophila suzukii. Entomologia Generalis. 41, 1-12 (2021).
  18. Hougardy, E., Hogg, B. N., Wang, X. G., Daane, K. M. Comparison of thermal performances of two Asian larval parasitoids of Drosophila suzukii. Biological Control. 136, 104000 (2019).
  19. Wang, X. G., Hogg, B. N., Hougardy, E., Nance, A. H., Daane, K. M. Potential competitive outcomes among three solitary larval endoparasitoids as candidate agents for classical biological control of Drosophila suzukii. Biological Control. 130, 18-26 (2019).
  20. Daane, K. M., Biondi, A., Wang, X. G., Hogg, B. A. Potential host ranges of three Asian larval parasitoids of Drosophila suzukii. Journal of Pest Science. 94 (4), 1171-1182 (2021).
  21. Girod, P., et al. Host specificity of Asian parasitoids for potential classical biological control of Drosophila suzukii. Journal of Pest Science. 91 (4), 1241-1250 (2018).
  22. Seehausen, M. L., et al. Evidence for a cryptic parasitoid species reveals its suitability as a biological control agent. Scientific Reports. 10 (1), 19096 (2020).
  23. Nomano, F. Y., et al. Genetic differentiation of Ganaspis brasiliensis (Hymenoptera: Figitidae) from East and Southeast Asia. Applied Entomology and Zoology. 52 (3), 429-437 (2017).
  24. Kasuya, N., Mitsui, H., Ideo, S., Watada, M., Kimura, M. T. Ecological, morphological and molecular studies on Ganaspis individuals (Hymenoptera: Figitidae) attacking Drosophila suzukii (Diptera: Drosophilidae). Applied Entomology and Zoology. 48 (1), 87-92 (2013).
  25. Matsuura, A., Mitsui, H., Kimura, M. T. A preliminary study on distributions and oviposition sites of Drosophila suzukii (Diptera: Drosophilidae) and its parasitoids on wild cherry tree in Tokyo, central Japan. Applied Entomology and Zoology. 53 (1), 47-53 (2018).
  26. Abram, P. K., et al. New records of Leptopilina, Ganaspis, and Asobara species associated with Drosophila suzukii in North America, including detections of L. japonica and G. brasiliensis. Journal of Hymenoptera Research. 78, 1-17 (2020).
  27. Puppato, S., Grassi, A., Pedrazzoli, F., De Cristofaro, A., Ioriatti, C. First report of Leptopilina japonica in Europe. Insects. 11 (9), 611 (2020).
  28. Dalton, D. T., et al. Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Pest Managagement Science. 67 (11), 1368-1374 (2011).

Play Video

Diesen Artikel zitieren
Rossi-Stacconi, M. V., Wang, X., Stout, A., Fellin, L., Daane, K. M., Biondi, A., Stahl, J. M., Buffington, M. L., Anfora, G., Hoelmer, K. A. Methods for Rearing the Parasitoid Ganaspis brasiliensis, a Promising Biological Control Agent for the Invasive Drosophila suzukii. J. Vis. Exp. (184), e63898, doi:10.3791/63898 (2022).

View Video