Summary

Super-risoluzione Imaging della Divisione Macchine batterica

Published: January 21, 2013
doi:

Summary

Descriviamo un super-risoluzione metodo di imaging per sondare l'organizzazione strutturale del batterica FtsZ-ring, un apparecchio essenziale per la divisione cellulare. Questo metodo si basa su analisi quantitative di fotoattivati ​​localizzazione microscopia (PALM) immagini e può essere applicata ad altre proteine ​​batteriche citoscheletro.

Abstract

Divisione cellulare batterica richiede il montaggio coordinato di più di dieci proteine ​​essenziali alla midcell 1,2. Centrale di questo processo è la formazione di un anello simile sovrastruttura (Z-ring) dalla proteina FtsZ al piano di divisione 3,4. La-Z anello costituito da più singolo filamento protofilamenti FtsZ, e comprendere la disposizione dei protofilamenti all'interno Z-ring fornirà sul meccanismo di Z-ring e la sua funzione di generatore di forza 5,6. Questa informazione è rimasta inafferrabile a causa delle limitazioni attuali convenzionale microscopia a fluorescenza e microscopia elettronica. Microscopia a fluorescenza convenzionale non è in grado di fornire una immagine ad alta risoluzione di Z-ring a causa del limite di diffrazione della luce (~ 200 nm). Electron cryotomographic di imaging ha rilevato sparsi protofilamenti FtsZ in piccole C. cellule crescentus 7, ma è difficile da applicare a grandi cellule qualiE. coli o B. subtilis. Qui si descrive l'applicazione di un metodo di risoluzione super-microscopia a fluorescenza, microscopia localizzazione fotoattivati ​​(PALM), per caratterizzare quantitativamente l'organizzazione strutturale della E. coli Z-ring 8.

PALM offre sia immagini alta risoluzione spaziale (~ 35 nm) e un'etichettatura specifica per consentire l'identificazione univoca delle proteine ​​bersaglio. Abbiamo etichettato FtsZ con il mEos2 fotoattivabile proteina fluorescente, che passa da verde a fluorescenza (eccitazione = 488 nm) al rosso fluorescenza (eccitazione = 561 nm) in caso di attivazione a 405 nm 9. Durante un esperimento PALM, singoli FtsZ-mEos2 molecole sono stocasticamente attivati ​​e le corrispondenti posizioni centroide delle singole molecole sono determinati con <20 nm precisione. Un super-risoluzione di immagine di Z-ring viene poi ricostruita sovrapponendo le posizioni centroide di tutti i rilevati FtsZ-mEos2 molecole.

<p class = "jove_content"> Usando questo metodo, abbiamo trovato che la Z-anello ha una larghezza fissa di circa 100 nm ed è composto da un fascio di allentato protofilamenti FtsZ che si sovrappongono tra loro in tre dimensioni. Questi dati forniscono un trampolino per ulteriori indagini modifiche ciclo cellulare dipendenti della Z-ring 10 e può essere applicata ad altre proteine ​​di interesse.

Protocol

1. Preparazione del campione Inoculare i terreni LB con una singola colonia di ceppo JB281 [BW25113 / pJB042 (P Lac: FtsZ-mEos2)]. Crescere durante la notte in uno shaker a 37 ° C. Diluire la cultura 1:1000 in M9 + minimi di media [Sali M9, 0,4% di glucosio, 2 mM MgSO4, 0.1 mM CaCl 2, Acidi MEM aminoacidi e vitamine] e crescere fino a metà-log fase (OD 600 = 0,2-0,3) in presenza di cloramfenicolo (150 mcg / ml) a temperatura ambiente (RT). </l…

Representative Results

Illustrato in Figura 3Aiv è bidimensionale, super-risoluzione resa del Z-ring generato dal metodo di imaging PALM descritto sopra. Qui di seguito, riassumiamo informazioni qualitative e quantitative che possono essere ottenuti da esse. Qualitativamente, abbiamo osservato che la Z-ring è una struttura irregolare che adotta più configurazioni (singola banda o arco elicoidale) che non sono distinguibili in tradizionali immagini di fluorescenza (confronta Figura 3A-Di…

Discussion

Immagini PALM contengono informazioni sui conteggi molecola e posizioni all'interno di una cella, consente un'analisi dettagliata della distribuzione e la disposizione delle molecole proteiche bersaglio che è difficile da ottenere con altri mezzi. Di seguito si evidenzieranno le precauzioni che dovrebbero essere prese per estrarre informazioni quantitative precise, pur mantenendo la rilevanza biologica delle immagini PALM. Abbiamo anche esplorare le informazioni che possono essere meglio ottenuta utilizzando ce…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

Grant: 5RO1GM086447-02.

Materials

Name of Reagent/Material Company Catalogue Number Comments
50 x MEM Amino Acids Sigma M5550
100 x MEM Vitamins Sigma M6895
IPTG Mediatech 46-102-RF
16% Paraformaldehyde Electron Micrsocopy Sciences 15710-S
SeaPlaque GTG Agarose Lonzo 50111
50 nm Gold Beads Microspheres-Nanospheres 790113-010
FCS2 Imaging Chamber Bioptechs
Stage Adaptor ASI I-3017
Inverted Microscope Olympus IX71
1.45 NA, 60x Objective Olympus
IXON EMCCD Camera Andor Technology DU897E
488-nm Sapphire Laser Coherent
561-nm Sapphire Laser Coherent
405-nm CUBE Laser Coherent

Referencias

  1. Buddelmeijer, N., Beckwith, J. Assembly of cell division proteins at the E. coli cell center. Curr. Opin. Microbiol. 5, 553-557 (2002).
  2. de Boer, P., Crossley, R., Rothfield, L. The essential bacterial cell-division protein FtsZ is a GTPase. Nature. 359, 254-256 (1992).
  3. Lutkenhaus, J. F., Wolf-Watz, H., Donachie, W. D. Organization of genes in the ftsA-envA region of the Escherichia coli genetic map and identification of a new fts locus (ftsZ). J. Bacteriol. 142, 615-620 (1980).
  4. Bi, E. F., Lutkenhaus, J. FtsZ ring structure associated with division in Escherichia coli. Nature. 354, 161-164 (1991).
  5. Erickson, H. P., Taylor, D. W., Taylor, K. A., Bramhill, D. Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc. Natl. Acad. Sci. U.S.A. 93, 519-523 (1996).
  6. Osawa, M., Anderson, D. E., Erickson, H. P. Reconstitution of contractile FtsZ rings in liposomes. Science. 320, 792-794 (2008).
  7. Li, Z., Trimble, M. J., Brun, Y. V., Jensen, G. J. The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. Embo J. 26, 4694-4708 (2007).
  8. Betzig, E., et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 313, 1642-1645 (2006).
  9. McKinney, S. A., Murphy, C. S., Hazelwood, K. L., Davidson, M. W., Looger, L. L. A bright and photostable photoconvertible fluorescent protein. Nat. Methods. 6, 131-133 (2009).
  10. Fu, G., et al. In-vivo FtsZ-ring structure revealed by Photoactivated Localization Microisocpy (PALM). Plos One. , (2010).
  11. Huecas, S., et al. Energetics and geometry of FtsZ polymers: nucleated self-assembly of single protofilaments. Biophys. J. , (2007).
  12. Ma, X., Ehrhardt, D. W., Margolin, W. Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc. Natl. Acad. Sci. U.S.A. 93, 12998-13003 (1996).
  13. Dai, K., Lutkenhaus, J. The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J. Bacteriol. 174, 6145-6151 (1992).
  14. Annibale, P., Vanni, S., Scarselli, M., Rothlisberger, U., Radenovic, A. Identification of clustering artifacts in photoactivated localization microscopy. Nat. Meth. 8, 527-528 (2011).
  15. Huang, B., Wang, W., Bates, M., Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science. 319, 810-813 (2008).
check_url/es/50048?article_type=t

Play Video

Citar este artículo
Buss, J., Coltharp, C., Xiao, J. Super-resolution Imaging of the Bacterial Division Machinery. J. Vis. Exp. (71), e50048, doi:10.3791/50048 (2013).

View Video