Summary

細菌分裂機械の超解像イメージング

Published: January 21, 2013
doi:

Summary

我々は、細菌のFtsZ-リングの構造、組織、細胞分裂に不可欠な装置を検査する、超解像イメージング法を説明します。この方法は、光活​​性化ローカライゼーション顕微鏡(PALM)画像の定量分析に基づいており、他の細菌の細胞骨格タンパク質に適用することができます。

Abstract

細菌の細胞分裂がmidcell 1,2で10以上必須タンパク質の協調アセンブリが必要です。このプロセスの中心には、分割計画3,4においてFtsZタンパク質によるリング状の上部構造(Z-リング)の形成である。 Z-リングは、複数の一本鎖FtsZのプロトフィラメントで構成されており、Z-リングの内側プロトフィラメントの配置を理解する力発生器5,6のように、Z-リングアセンブリとその機能のメカニズムへの洞察を提供します。この情報は、従来の蛍光顕微鏡と電子顕微鏡で起因する電流制限にとらえどころのない推移している。従来の蛍光顕微鏡は、光の回折限界(〜200 nm)に起因し、Z-リングの高解像度の画像を提供することができません。電子cryotomographicイメージングは小さなCに散在FtsZのプロトフィラメントが検出されましたcrescentusセル 7が、そのようなのようなより大きなセルに適用することは困難である大腸菌または B 枯草 。ここでは、定量的にEの構造組織を特徴づけるために超解像蛍光顕微鏡法、光活性化ローカライゼーション顕微鏡(PALM)のアプリケーションを記述する大腸菌 、Z-リング8。

PALMイメージングは​​、高空間分解能(〜35 nm)と標的タンパク質の明確な識別を可能にするために、特定のラベルの両方を提供しています。我々は405nmの9時に起動したときに赤色蛍光(励起= 561 nm)に緑色蛍光(励起= 488 nm)から切り替える光活性化蛍光タンパク質mEos2とFtsZのラベルが付いた。やし実験中、シングルFtsZ-mEos2分子は確率的に活性化され、単一分子の対応する重心位置が<20 nmの精度で決定されます。 Z-リングの超解像は、すべての検出されたFtsZ-mEos2分子の重心位置を重ね合わせて再構築さ​​れます。

<Pクラス= "jove_content">この方法を用いて、我々は、Z-リングが〜100nmの固定幅を持っており、三次元的に互いに重ならFtsZのプロトフィラメントの緩い束で構成されていることがわかった。これらのデータは、Z-リング10の細胞周期依存性の変化のさらなる調査のための足がかりを提供し、関心のある他のタンパク質に適用することができます。

Protocol

1。試料調製ひずみJB281の単一コロニーをLB培地に接種[BW25113 / pJB042(P ラック :FtsZ-mEos2)]。 37℃で振とう機で一晩増殖℃、 M9 +最少培地[M9塩、0.4%グルコース、2mMのMgSO 4を 、0.1 mMのCaCl 2、MEMアミノ酸やビタミン]に文化1:1,000希釈し、中期対数期(OD 600 = 0.2から0.3)に成長室温(RT)でクロラムフェニコール(150μg/ ml)をプレゼンスイン?…

Representative Results

図3Aivに示すが、上述のPALMイメージング法から生成Z-リングの二次元、超解像レンダリングです。以下では、私たちがそれらから得られる定性的および定量的な情報を要約したものです。 定性的には、我々は、Z-リング( 図3A-DIIと iv を比較)従来の蛍光画像では区別できないので、複数の構成(シングルバンドまたはヘ…

Discussion

PALMのイメージは、他の手段によって達成することは困難である標的タンパク質分子の分布および配置の詳細な分析を可能にする、セル内の分子数と位置に関する情報が含まれています。以下では、PALM画像の生物学的関連性を維持しながら、正確な定量的情報を抽出するために取られるべきである注意事項を概説しています。我々はまた、最高のライブ対固定された細胞を用いて得ることが?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

グラント:5RO1GM086447-02。

Materials

Name of Reagent/Material Company Catalogue Number Comments
50 x MEM Amino Acids Sigma M5550
100 x MEM Vitamins Sigma M6895
IPTG Mediatech 46-102-RF
16% Paraformaldehyde Electron Micrsocopy Sciences 15710-S
SeaPlaque GTG Agarose Lonzo 50111
50 nm Gold Beads Microspheres-Nanospheres 790113-010
FCS2 Imaging Chamber Bioptechs
Stage Adaptor ASI I-3017
Inverted Microscope Olympus IX71
1.45 NA, 60x Objective Olympus
IXON EMCCD Camera Andor Technology DU897E
488-nm Sapphire Laser Coherent
561-nm Sapphire Laser Coherent
405-nm CUBE Laser Coherent

Referencias

  1. Buddelmeijer, N., Beckwith, J. Assembly of cell division proteins at the E. coli cell center. Curr. Opin. Microbiol. 5, 553-557 (2002).
  2. de Boer, P., Crossley, R., Rothfield, L. The essential bacterial cell-division protein FtsZ is a GTPase. Nature. 359, 254-256 (1992).
  3. Lutkenhaus, J. F., Wolf-Watz, H., Donachie, W. D. Organization of genes in the ftsA-envA region of the Escherichia coli genetic map and identification of a new fts locus (ftsZ). J. Bacteriol. 142, 615-620 (1980).
  4. Bi, E. F., Lutkenhaus, J. FtsZ ring structure associated with division in Escherichia coli. Nature. 354, 161-164 (1991).
  5. Erickson, H. P., Taylor, D. W., Taylor, K. A., Bramhill, D. Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc. Natl. Acad. Sci. U.S.A. 93, 519-523 (1996).
  6. Osawa, M., Anderson, D. E., Erickson, H. P. Reconstitution of contractile FtsZ rings in liposomes. Science. 320, 792-794 (2008).
  7. Li, Z., Trimble, M. J., Brun, Y. V., Jensen, G. J. The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. Embo J. 26, 4694-4708 (2007).
  8. Betzig, E., et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 313, 1642-1645 (2006).
  9. McKinney, S. A., Murphy, C. S., Hazelwood, K. L., Davidson, M. W., Looger, L. L. A bright and photostable photoconvertible fluorescent protein. Nat. Methods. 6, 131-133 (2009).
  10. Fu, G., et al. In-vivo FtsZ-ring structure revealed by Photoactivated Localization Microisocpy (PALM). Plos One. , (2010).
  11. Huecas, S., et al. Energetics and geometry of FtsZ polymers: nucleated self-assembly of single protofilaments. Biophys. J. , (2007).
  12. Ma, X., Ehrhardt, D. W., Margolin, W. Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc. Natl. Acad. Sci. U.S.A. 93, 12998-13003 (1996).
  13. Dai, K., Lutkenhaus, J. The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J. Bacteriol. 174, 6145-6151 (1992).
  14. Annibale, P., Vanni, S., Scarselli, M., Rothlisberger, U., Radenovic, A. Identification of clustering artifacts in photoactivated localization microscopy. Nat. Meth. 8, 527-528 (2011).
  15. Huang, B., Wang, W., Bates, M., Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science. 319, 810-813 (2008).
check_url/es/50048?article_type=t

Play Video

Citar este artículo
Buss, J., Coltharp, C., Xiao, J. Super-resolution Imaging of the Bacterial Division Machinery. J. Vis. Exp. (71), e50048, doi:10.3791/50048 (2013).

View Video