Summary

心肌内细胞交货:观察在小鼠心脏

Published: January 24, 2014
doi:

Summary

心血管疾病,如高血压或心肌梗死的小鼠模型心肌内细胞递送,被广泛用于测试在再生研究不同细胞类型的治疗潜力。因此,有详细说明,该手术过程有一个清晰的可视化将有助于确定在小型啮齿动物心血管细胞治疗分析的局限性和优势。

Abstract

以往的研究表明,细胞传递促进心功能改善细胞因子和增加心肌组织再血管化和细胞生存因子的释放。此外,进一步的观察发现,特定的干细胞,如心肌干细胞,间充质干细胞和cardiospheres有通过分化成心肌细胞,平滑肌细胞和内皮细胞周围的心肌内整合的能力。

这里,我们提出的材料和方法,以可靠地提供noncontractile细胞进入immunodepleted小鼠的左心室壁。其显着的步骤此显微程序涉及麻醉和镇痛注射液,气管插管,切开打开胸部和无菌30号针头和精密微升注射器暴露细胞的心脏和交付。

包括心脏收获,embeddi组织处理毫微克,切片及组织学染色显示心肌内注射细胞产生一小的伤害的心外膜区域,以及在心室壁上。 Noncontractile细胞被保留到免疫缺陷小鼠的心肌壁并分别由一层纤维组织,有可能从心脏压力和机械负载,以保护所包围。

Introduction

各种细胞输送协议已经在心血管疾病的小鼠和大鼠模型进行了测试与翻译这个实验过程在人类患者的效率,有效性和安全性的目的。在小型啮齿动物的心,心肌内细胞传递是传递细胞1,2的最可行的方法,而在大鼠心脏顺行34逆行冠脉内细胞输注,也可以使用。这两种方法有很大的局限性和优势。经冠状动脉内途径细胞递送拥有注射在促进全球细胞传播3直接肌肉注射理论上的优势,但它也有引起冠状动脉栓塞3,5的风险。在心肌内交付限制与机械性损伤,急性炎症,心肌损害6,7关联。在人类中,细胞是心脏修复是通过心肌内注射,通过心内膜或心外膜的手术递送接近或冠状动脉内的动脉途径8。注射液经血管途径适合于治疗急性脑梗死和心肌再灌注,但可能无法进行的情况下完全闭塞或受影响的领土9的血管里流动不畅的。直接注射到左心室壁通过经心或transepicardial注射在技术上是可行取决于病人的健康状况。事实上,已经表明,这种技术是安全的10,11,尽管对于transepicardial注射是必要的开胸手术和经心方法是必需的,以区分存活缺血或心肌疤痕9的部位的电生理标测对每个病人。

重要的是,在细胞治疗研究的最佳细胞移植的选择仍在进一步调查中。短期的分析(4周)表明,注射定义为cardiospheres心脏干细胞的<s向上> 12或从骨髓13侧群细胞诱导的心功能恢复的小鼠14和大鼠模型15心肌梗塞通过减少瘢痕大小和细胞死亡。在没有免疫抑制大鼠心肌梗死模型cardiospheres同种异体移植被认为是安全的,促进心肌再生,并通过内源性修复机制15刺激改善心脏功能。在心脏Lin-/c-kit +能成体祖细胞被证明是自我更新,克隆,和多能在体外体内 ,并且当注射到缺血大鼠心脏重构受伤的心肌壁16的大的部分和有能力,形成导电性和中等大小的冠状动脉17。这些可喜的数据引发的I期和人类II期临床试验:注射自体和异体骨髓间充质干细胞(MSC)18,cardiospheres 19,或c-Kit阳性心脏干细胞(CSC)20在缺血人类的心灵每个显示,在长期的研究心脏功能的有益作用。然而,大量的长期随访和回顾性荟萃分析表明,干细胞疗法提供了显著的好处有些病人,而不是在别人与一系列不可预知的结果21。这是可能的,这些限制将需要的细胞递送的每个个人和每一种疾病的具体协议的设计。

在小鼠和大鼠模型中,长期的研究表明,细胞注射未进一步改善心脏功能(12个月)。的确,人胚胎干细胞衍生的心肌细胞(hESC细胞-CM)的移植物主要是由一层纤维组织22,23的分离自宿主的心肌。骨骼肌成肌细胞心肌内移植到梗死小鼠24的心脏后,类似的结果也被观察到。 Furthermo重,同种异体干细胞的保存功能中的梗塞心脏的长期能力已经通过从immunoprivileged到免疫原性的状态转移分化25后受到限制。

考虑到上述挑战和前景,我们在这里展示如何通过心肌内注射小鼠,提供细胞。我们观察到细胞无心肌收缩性能不与宿主心肌相连形成一个粘合体具有薄纤维化障碍。尽管在某些情况下,这种结果可能是有利的,下面的分析可能是有用的,以了解细胞植入可被调制,以产生功能性连接的心肌的结构为好。

Protocol

所有动物实验均符合国际(欧洲议会指令2010/63/EU)和国家(英国内政部,1986法案)的规定执行。本文所述的方法是我们在英国的许可证主管部门的工作计划的一部分,并没有被进行记录的目的。 1。细胞的制备本协议描述了用于演示目的编制特定的细胞系(人类胚胎肾,HEK293细胞)。小区特定的协议必须采用用于生长并最终分化多能性或成体干细胞分化?…

Representative Results

我们注入的HEK293细胞中,这是由它们的不同的形态可区分从心脏细胞( 图1),用鹅卵石形状较细长的心肌细胞( 图1A)。相比,心肌细胞(粉红色),有可能的,因为它们的增加的核含量( 图1A)的HEK293细胞,更具反应性,以苏木精染料(蓝色)。为了进一步区分注射的细胞从宿主组织中,将HEK293细胞用DAPI标记前2小时注射。标记的细胞是可见的心肌组织,…

Discussion

在这个手稿中,我们已经展示了如何在小鼠心脏进行心肌内注射细胞。作为这种方法的一个证据,我们已经使用HEK293细胞。需要强调的是HEK293细胞中的任何细胞治疗研究中没有使用,因此该手稿的发现并不适合直接翻译为一种治疗方法是很重要的。然而,事实是HEK293细胞不收缩细胞,不要在其他细胞类型转分化侧重于技术方面,例如要传送的单元的属性和传送路线的注意。

?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

我们感谢马格迪雅各布研究所(MYI),用于支持显微镜分析,涉及心肌修复,技术人员和我们的动物设施的管理器中的项目。这项工作已经由英国心脏基金会(BHF),项目补助PG/10/019支持。 MPS是由MYI和BHF支撑。 TP是BHF-卓越研究研究员。 NR是NH&MRC澳大利亚研究员。

Materials

Isolator Pfi systems Quotation needed
Heating Pad Vet Tech Solutions HE006 For small animals
medetomidine National veterinary Service Veterinary prescription is necessary
ketamine hydrochloride National veterinary Service Veterinary prescription is necessary
atipamezole National veterinary Service Veterinary prescription is necessary
Hair removal cream Commercial shops
buprenorphine NVS Veterinary prescription is necessary
Leica MZFLIII microscope Leica Model S6E With swing arm stand TS0
Hamamatsu Nanozoomer digital slide scanner Hamamatsu RS series
Scanning Electron Microscope Jeol JSM-6610
Blunt scissors FST 14084-09
Minivent Harvard apparatus 73-0043 Including small Y adapter (73-0027) and intubation cannula (73-2844)
Forceps FST 11052-10
Retraction system FST 18200-20 Kit for animals up to 200grams
30G 12mm; ½ inch BBraun A210 Fine yellow
microliter syringe ESSLAB 81201 Also include a Hamilton repeating dispenser PB 600-1 Catalogue number 83700
6-0 silk suture Ethicon W1614T

Referencias

  1. Menasche, P., et al. Myoblast transplantation for heart failure. Lancet. 357, 279-280 (2001).
  2. Taylor, D. A., et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med. 4, 929-933 (1998).
  3. Suzuki, K., et al. Cell transplantation for the treatment of acute myocardial infarction using vascular endothelial growth factor-expressing skeletal myoblasts. Circulation. 104, 207-212 (2001).
  4. Suzuki, K., et al. Targeted cell delivery into infarcted rat hearts by retrograde intracoronary infusion: distribution, dynamics, and influence on cardiac function. Circulation. 110, 225-230 (2004).
  5. Robinson, S. W., et al. Arterial delivery of genetically labelled skeletal myoblasts to the murine heart: long-term survival and phenotypic modification of implanted myoblasts. Cell Transplant. 5, 77-91 (1996).
  6. Muller-Ehmsen, J., et al. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J. Mol. Cell Cardiol. 34, 107-116 (2002).
  7. Reinecke, H., Zhang, M., Bartosek, T., Murry, C. E. Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation. 100, 193-202 (1999).
  8. Dimmeler, S., Zeiher, A. M., Schneider, M. D. Unchain my heart: the scientific foundations of cardiac repair. J. Clin. Invest. 115, 572-583 (2005).
  9. Oettgen, P., Boyle, A. J., Schulman, S. P., Hare, J. M. Cardiac Stem Cell Therapy. Need for Optimization of Efficacy and Safety Monitoring. Circulation. 114, 353-358 (2006).
  10. Krause, K., et al. Percutaneous intramyocardial stem cell injection in patients with acute myocardial infarction: first-in-man study. Heart. 95, 1145-1152 (2009).
  11. Rodrigo, S. F., et al. Intramyocardial injection of bone marrow mononuclear cells in chronic myocardial ischemia patients after previous placebo injection improves myocardial perfusion and anginal symptoms: an intra-patient comparison. Am. Heart J. 164, 771-778 (2012).
  12. Smith, R. R., et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 115, 896-908 (2007).
  13. Sadek, H. A., Martin, C. M., Latif, S. S., Garry, M. G., Garry, D. J. Bone-marrow-derived side population cells for myocardial regeneration. J. Cardiovasc. Transl. Res. 2, 173-181 (2009).
  14. Messina, E., et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 95, 911-921 (2004).
  15. Malliaras, K., et al. Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation. , 125-1100 (2012).
  16. Beltrami, A. P., et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 114, 763-776 (2003).
  17. Bearzi, C., et al. Identification of a coronary vascular progenitor cell in the human heart. Proc. Natl. Acad. Sci. U.S.A. 106, 15885-15890 (2009).
  18. Hare, J. M., et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 308, 2369-2379 (2012).
  19. Makkar, R. R., et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 379, 895-904 (2012).
  20. Bolli, R., et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 378, 1847-1857 (2011).
  21. Brunt, K. R., Weisel, R. D., Li, R. K. Stem cells and regenerative medicine – future perspectives. Can. J. Physiol. Pharmacol. 90, 327-335 (2012).
  22. Laflamme, M. A., et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 1015-1024 (2007).
  23. van Laake, L. W., et al. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res. 1, 9-24 (2007).
  24. Leobon, B., et al. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc. Natl. Acad. Sci. U.S.A. 100, 7808-7811 (2003).
  25. Huang, X. P., et al. Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation. 122, 2419-2429 (2010).
  26. Reinecke, H., Poppa, V., Murry, C. E. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J. Mol. Cell Cardiol. 34, 241-249 (2002).
  27. Springer, M. L., et al. Closed-chest cell injections into mouse myocardium guided by high-resolution echocardiography. Am. J. Physiol. Heart Circ. Physiol. 289, 1307-1314 (2005).
  28. Hamdi, H., et al. Cell delivery: intramyocardial injections or epicardial deposition? A head-to-head comparison. Ann. Thorac. Surg. 87, 1196-1203 (2009).
  29. Terrovitis, J. V., Smith, R. R., Marban, E. Assessment and optimization of cell engraftment after transplantation into the heart. Circ. Res. 106, 479-494 (2008).
  30. Kehat, I., et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol. 22, 1282-1289 (2004).
  31. van Laake, L. W., et al. Improvement of mouse cardiac function by hESC-derived cardiomyocytes correlates with vascularity but not graft size. Stem Cell Res. 3, 106-112 (2009).
  32. Fernandes, S., et al. Autologous myoblast transplantation after myocardial infarction increases the inducibility of ventricular arrhythmias. Cardiovasc. Res. 69, 348-358 (2006).
  33. Scherschel, J. A., Soonpaa, M. H., Srour, E. F., Field, L. J., Rubart, M. Adult bone marrow-derived cells do not acquire functional attributes of cardiomyocytes when transplanted into peri-infarct myocardium. Mol. Ther. 16, 1129-1137 (2008).
  34. Wei, F., et al. Mesenchymal stem cells neither fully acquire the electrophysiological properties of mature cardiomyocytes nor promote ventricular arrhythmias in infarcted rats.. Basic Res Cardiol. 107, 274 (2012).
  35. Fukushima, S., et al. Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation. 115, 2254-2261 (2007).
  36. Bartunek, J., et al. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation. 112, 178-183 (2005).
  37. Britten, M. B., et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation. 108, 2212-2218 (2003).
  38. Smits, P. C., et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J. Am. Coll. Cardiol. 42, 2063-2069 (2003).
  39. Kang, H. J., et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet. 363, 751-756 (2004).
  40. Fernandez-Aviles, F., et al. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ. Res. 95, 742-748 (2004).
  41. Vulliet, P. R., Greeley, M., Halloran, S. M., MacDonald, K. A., Kittleson, M. D. Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet. 363, 783-784 (2004).

Play Video

Citar este artículo
Poggioli, T., Sarathchandra, P., Rosenthal, N., Santini, M. P. Intramyocardial Cell Delivery: Observations in Murine Hearts. J. Vis. Exp. (83), e51064, doi:10.3791/51064 (2014).

View Video