Summary

异条件下具有不同刚度的聚乙烯醇-钴-衣康酸水凝胶的人多能干细胞培养

Published: February 03, 2018
doi:

Summary

提出了一种不同刚度的聚乙烯醇-共衣酸凝胶的制备方法, 并与无肽接枝, 研究了生物材料的硬度对其分化和增殖的影响。干细胞。水凝胶的刚度受交联时间的控制。

Abstract

一些研究人员研究了物理线索, 如生物材料的硬度对干细胞增殖和分化的影响。然而, 这些研究人员大多用聚丙烯酰胺水凝胶进行干细胞培养。因此, 它们的结果是有争议的, 因为这些结果可能来源于聚丙烯酰胺的具体特性, 而不是生物材料的物理提示 (刚度)。在这里, 我们描述了一个用于制备水凝胶的协议, 它不是以聚丙烯酰胺为基础的, 它可以培养各种干细胞, 包括人类胚胎干细胞和人类诱导的多能干细胞 (iPS) 细胞。从 bioinert 聚乙烯醇-共衣酸 (P IA) 制备了不同刚度的水凝胶, 通过改变交联时间来控制交联度的刚度。以细胞外基质为基础, 研究了肽的 P IA 水凝胶作为干细胞培养和分化的未来平台。本文详细介绍了羊水干细胞、脂肪源性干细胞、人 ES 细胞和人类 iPS 细胞的培养和传代。肽的 P IA 水凝胶表现出优异的性能, 这是由它们的刚度特性引起的。该协议报告了生物材料的合成, 他们的表面操作, 以及控制的刚度性质, 最后, 它们对干细胞的命运的影响, 利用异的自由文化条件。根据最近的研究, 这种改良的基板可以作为未来的平台, 支持和指导各种干细胞线的命运, 以不同的联系;进一步, 再生和恢复失去的器官或组织的功能。

Introduction

干细胞分化为特定细胞谱系的命运和干细胞的长期增殖, 特别是人类诱导的多能 (iPS) 细胞和人类胚胎干细胞, 已知受抑制剂、生长因子和/或培养培养基中的小生物活性分子。最近, 生物材料的物理线索, 特别是细胞培养生物材料的硬度, 已被认为是一个重要的因素, 引导干细胞增殖和分化的命运1,2, 3456。因此, 一些研究人员已经开始研究干细胞的命运, 它们在水凝胶上培养, 分化, 主要是采用不同刚度的聚丙烯酰胺水凝胶。

生物材料的硬度可以控制局灶粘连, 细胞形态学, 细胞表型和干细胞黏附, 特别是在二维 (2 维) 培养1,2,3,5。干细胞对生物材料的机械传感通常是通过整合素受体的黏着性信号来控制的。NMMIIA, nonmuscle 肌球蛋白 IIA 与肌动蛋白细胞骨架的依赖性收缩作用在2维细胞培养系统中的干细胞 mechanosensing 过程中起着至关重要的角色3,4,5, 7,8,9,10,11

恩和他的同事们提出了一个有趣的观点, 即成体干细胞, 如骨髓干细胞培养的细胞培养生物材料具有类似的刚性与特定组织, 往往分化成细胞起源于特定的组织5。在膨胀介质中, 培养的2维软质聚丙烯酰胺水凝胶 (与脑组织的硬度可比) 被自发诱导分化为早期神经元谱系, 而 bms 细胞在在2维聚丙烯酰胺水凝胶3,5中, 与肌肉或胶原骨组织相似的水凝胶分别被发现诱导分化为心肌细胞和成骨细胞的早期谱系。许多研究者研究了胶原蛋白固定化培养的聚丙烯酰胺水凝胶的干细胞命运. i12,13,14,15,16,17,18,19,20,21. 但是, 应该提到一些相互矛盾的报告1,18,22,23,24为恩建议的知名的想法存在et al.5这是因为恩的想法5仅是在聚丙烯酰胺水凝胶上开发的, 其结果来源于生物材料 (聚丙烯酰胺) 的特定特性, 而不仅仅是物理提示 (刚度)生物材料因此, 开发另一种类型的水凝胶是很重要的, 其中的刚性可以通过交联凝胶来控制。为此, 研制了 bioinert 水凝胶, 由聚乙烯醇-共衣康酸 (P IA) 与不同的刚度, 这是由交联度控制与改变交联时间25,26,27,28,29,30,31,32. 干细胞可以在 nonmodified 的 p-ia 水凝胶上培养, 以及与胞外基质 (ECMs) 和肽接枝的 p ia 水凝胶。在先前的研究25中, 从脐带血中培养出的人造血干细胞 (hHSCs) 在不同刚度值的 P IA 水凝胶中进行, 从3帕斯卡到30帕斯卡的储存模数, 其中纤维连接蛋白或肽来自纤维连接蛋白 (CS1, EILDVPST) 被嫁接到 P IA 水凝胶。在 CS1 或纤维连接蛋白接枝的 P IA 水凝胶中观察到 hHSCs 的高体外折叠扩张, 显示了从12帕斯卡到30帕的中间刚度不等的 25

人类 ips 和 ES 细胞不能在传统的组织培养聚苯乙烯 (TCP) 菜肴上培养33,34 , 因为人类 es 和 ips 细胞需要对 ECMs (如受精或层粘连蛋白) 进行特定的绑定, 以保持其多在长期文化。因此, 设计并制备了具有最佳刚度特性的肽接枝型 P IA 水凝胶结构, 并在单链、单链、联合段、双链、节段、分支式链32。从 ECMs 的整合素和多糖结合域中选择了肽序列。受精肽与双链或关节段连接的 P IA 水凝胶, 其储存模量在大约25人民军, 支持人类 ES 和 iPS 细胞的长期培养, 超过12个通道在无异和化学定义的条件32。在水凝胶上的关节段和双链细胞黏附分子促进了人类 ES 和 iPS 细胞的增殖和多32。这里, 一个关于制备 P IA 水凝胶的协议 (以储存模数从10人民军到30帕, 这是测量在空气湿条件下) 接枝和没有肽或 ECMs 描述。如何培养和通过几个干细胞 (包括羊水干细胞, 脂肪来源干细胞, 人 ES 细胞, 人类 iPS 细胞) 显示。

Protocol

本研究的实验得到了台湾 Landseed 医院 (IRB-13-05) 和国立中央大学伦理委员会的批准。在本研究中, 所有的实验都是按照所有相关的和适用的政府和机构的指导方针和规定进行的。 1. 解决方案和媒体准备 高分子提纯 用乙醇洗涤 p ia 水解 > 96.5% 的羧酸基团净化 p ia。在500毫升的圆锥烧杯中将20克的 P IA 放入200毫升的乙醇中, 在磁力搅拌器上搅拌 24-30 h. ?…

Representative Results

采用肽 (oligoECM) 或不同弹性的 ecm 接枝的 P IA 水凝胶是通过以下的反应方案来制备的, 如图 1A所示, 使用不同类型的 oligoECM (图 1B)。水凝胶的弹性由应用的交联强度 (时间) (图 1C) 调节。采用受精衍生肽接枝的 P IA 水凝胶, 具有25.3 帕 (24 h 交联时间) 的贮存模量, 支持人类 iPS 和 ES 细胞长期培养超过10-20 通道。…

Discussion

为了长期扩展人类 ES 和 iPS 细胞, 在异自由条件下维持其多超过十通道, 以及对人类 AFS 细胞、广告细胞的培养, 建立了具有不同刚度的 p-ia-oligoECM 和 p-ia 型 ECM 水凝胶,和造血干细胞25,28,32。oligoECM 固定化的 p-IA 水凝胶是细胞培养材料研究细胞培养材料对不同类型的干细胞分化和增殖的命运以及原代细胞的影响的绝佳候选物。癌?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这项研究得到了部分支持的科技部, 台湾根据赠款编号 106-2119-m-008-003, 105-2119-m-008-006, 和 104-2221-e–008-107-MY3。这项研究也得到了台湾 Landseed 医院项目 (NCU-LSH-105-A-001) 的支持。还承认日本教育、文化、体育、科学和技术部的科研资助 (数字 15K06591)。a. 口想感谢沙特阿拉伯王国利雅得11451沙特国王大学国际科学伙伴计划 (ISPP-0062) 的研究生研究和研究副校长。

Materials

GTPGPQGIAGQRGVV PH Japan none Specification: Oligopeptide
Abbreviation: Cyclic RGD, cRGD
GACRGDCLGA PH Japan none Specification: Oligopeptide
Abbreviation: FN1
KGGAVTGRGDSPASS PH Japan none Specification: Oligopeptide
Abbreviation: CS1
EILDVPST PH Japan none Specification: Oligopeptide
Abbreviation: VN1
KGGPQVTRGDVFTMP PH Japan none Specification: Oligopeptide
Abbreviation: HBP1
GKKQRFRHRNRKG PH Japan none Specification: Oligopeptide
Abbreviation: HBP2C
CGGGKKQRFRHRNRKG PH Japan none Specification: Oligopeptide
Abbreviation: VN1G
GGGGKGGPQVTRGDVFTMP PH Japan none Specification: Oligopeptide
Abbreviation: VN2C
GCGGKGGPQVTRGDVFTMP PH Japan none Specification: Extracellular matrix
Abbreviation: rVN
Vitronectin Thermo Fisher scientific A14700 Specification: Extracellular matrix
Abbreviation: FN
Fibronectin Sigma-Aldrich F2006 Specification: Commercially available coating material
Abbreviation: Synthemax II
Synthemax II Corning 3535 Specification: Polymer
Polyvinylalcohol-co-itaconic acid Japan VAM & Poval AF-17 Specification: Chemical
Glutaraldehyde Sigma-Aldrich G5882 Specification: Chemical
Na2SO4 Sigma-Aldrich 239313 Specification: Chemical
H2SO4 Sigma-Aldrich 339741 Specification: Chemical
Abbreviation: EDC
N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride Sigma-Aldrich E7750 Specification: Chemical
Abbreviation: NHS
N-hydroxysuccinimide Sigma-Aldrich 56480 Specification: Chemical
Paraformaldehyde Sigma-Aldrich P6148 Specification: Chemical
Triton-X100 Sigma-Aldrich T8787 Specification: Cell culture consumable
Cell scraper Corning 3008 Specification: Cell culture consumable
Dispase II Sigma-Aldrich SI-D4693 Specification: Cell culture medium
Essential 6 Thermo Fisher scientific A1516401 Specification: Cell culture medium
Essential 8 Thermo Fisher scientific A1517001 Specification: Cell culture medium
DMEM/F12 Thermo Fisher scientific 11330-032 Specification: Cell culture medium
DMEM Thermo Fisher scientific 12800-017 Specification: Cell culture medium
MCDB 201 Sigma-Aldrich M6770 Specification: ES cell
Human ES cell WiCell Research Institute, Inc.. WA09 Specification: iPS cell
Human iPS cell Riken Cell Bank HS0077 Specification: 35 mm
Abbreviation: TCP
TCP dish Corning 353001 Specification: 60 mm
Abbreviation: TCP
TCP dish Corning 353002 Specification: 24 well dish
24 well dish Corning 353047 Specification: Blocking agent
Bovine serum albumin Sigma-Aldrich A8806 Specification: Detection reagent
Alkaline phosphatase live stain Thermo Fisher scientific A14353 Specification: Detection reagent
Hematoxylin & eosin Sigma-Aldrich 1.05175 Specification: EB formation dish
6-well ultralow attachment dish Corning 3471 Specification: Coating material
gelatin Sigma-Aldrich G9391 Specification: Coating material
Matrigel Corning 354230 Specification: Mice
NOD-SCID mice National Applied Research Laboratories None Specification: Serum
Fetal bovine serum Biological Industries 04-001-1A Specification: Antibiotic
antimycotic antibiotic Thermo Fisher scientific 15240-062 Specification: Antibody
Antibody for Nanog Invitrogen MA1-017 Specification: Antibody
Antibody for SSEA4 Abcam ab16287 Specification: Antibody
Antibody for OCT3/4 Invitrogen PA5-27438 Specification: Antibody
Antibody for Sox2 Invitrogen 48-1400 Specification: Antibody
Antibody for Smooth Muscle Actin Invitrogen PA5-19465 Specification: Antibody
Antibody for AFP Invitrogen PA5-21004 Specification: Antibody
Antibody GFAP Invitrogen MA5-15086 Specification: Antibody
Alexa Fluor 555 – conjugated Goat anti-Mouse antibody Invitrogen A-21422 Specification: Antibody
Alexa Fluor 488 – conjugated Goat anti-Rabbit antibody Invitrogen A-11008 Specification: Antibody

Referencias

  1. Higuchi, A., Ling, Q. D., Chang, Y., Hsu, S. T., Umezawa, A. Physical cues of biomaterials guide stem cell differentiation fate. Chem. Rev. 113, 3297-3328 (2013).
  2. Higuchi, A., et al. Physical cues of cell culture materials lead the direction of differentiation lineages of pluripotent stem cells. J. Mater. Chem. B. 3, 8032-8058 (2015).
  3. Wen, J. H., et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater. 13, 979-987 (2014).
  4. Murphy, W. L., McDevitt, T. C., Engler, A. J. Materials as stem cell regulators. Nat. Mater. 13, 547-557 (2014).
  5. Engler, A. J., Sen, S., Sweeney, H. L., Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell. 126, 677-689 (2006).
  6. Higuchi, A., et al. Polymeric design of cell culture materials that guide the differentiation of human pluripotent stem cells. Prog. Polym. Sci. 65, 83-126 (2017).
  7. Chen, W. Q., et al. Nanotopography Influences Adhesion, Spreading, and Self-Renewal of Human Embryonic Stem Cells. ACS Nano. 6, 4094-4103 (2012).
  8. Chowdhury, F., et al. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat. Mater. 9, 82-88 (2010).
  9. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell. 6, 483-495 (2004).
  10. Li, D., et al. Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. J. Cell Biol. 191, 631-644 (2010).
  11. Yang, M. T., Fu, J. P., Wang, Y. K., Desai, R. A., Chen, C. S. Assaying stem cell mechanobiology on microfabricated elastomeric substrates with geometrically modulated rigidity. Nat. Protoc. 6, 187-213 (2011).
  12. Shih, Y. R. V., Tseng, K. F., Lai, H. Y., Lin, C. H., Lee, O. K. Matrix Stiffness Regulation of Integrin-Mediated Mechanotransduction During Osteogenic Differentiation of Human Mesenchymal Stem Cells. J. Bone Miner. Res. 26 (4), 730-738 (2011).
  13. Du, J., et al. Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. Proc. Natl. Acad. Sci. U S A. 108, 9466-9471 (2011).
  14. Xue, R., Li, J. Y., Yeh, Y., Yang, L., Chien, S. Effects of matrix elasticity and cell density on human mesenchymal stem cells differentiation. J. Orthop. Res. 31 (9), 1360-1365 (2013).
  15. Mao, A. S., Shin, J. W., Mooney, D. J. Effects of substrate stiffness and cell-cell contact on mesenchymal stem cell differentiation. Biomaterials. 98, 184-191 (2016).
  16. Witkowska-Zimny, M., et al. Effect of substrate stiffness on differentiation of umbilical cord stem cells. Acta Biochim. Pol. 59 (2), 261-264 (2012).
  17. Witkowska-Zimny, M., et al. Effect of substrate stiffness on the osteogenic differentiation of bone marrow stem cells and bone-derived cells. Cell Biol. Int. 37 (6), 608-616 (2013).
  18. Macri-Pellizzeri, L., et al. Substrate stiffness and composition specifically direct differentiation of induced pluripotent stem cells. Tissue Eng. Part A. 21 (9-10), 1633-1641 (2015).
  19. Cozzolino, A. M., et al. Modulating the Substrate Stiffness to Manipulate Differentiation of Resident Liver Stem Cells and to Improve the Differentiation State of Hepatocytes. Stem Cells Int. , 5481493 (2016).
  20. Mattei, G., Ferretti, C., Tirella, A., Ahluwalia, A., Mattioli-Belmonte, M. Decoupling the role of stiffness from other hydroxyapatite signalling cues in periosteal derived stem cell differentiation. Sci. Rep. 5, 10778 (2015).
  21. Zouani, O. F., Kalisky, J., Ibarboure, E., Durrieu, M. C. Effect of BMP-2 from matrices of different stiffnesses for the modulation of stem cell fate. Biomaterials. 34 (9), 2157-2166 (2013).
  22. Ye, K., Cao, L., Li, S., Yu, L., Ding, J. Interplay of Matrix Stiffness and Cell-Cell Contact in Regulating Differentiation of Stem Cells. ACS Appl. Mater. Interfaces. 8 (34), 21903-21913 (2016).
  23. Hogrebe, N. J., Gooch, K. J. Direct influence of culture dimensionality on human mesenchymal stem cell differentiation at various matrix stiffnesses using a fibrous self-assembling peptide hydrogel. J. Biomed. Mater. Res. A. 104 (9), 2356-2368 (2016).
  24. Olivares-Navarrete, R., et al. Substrate Stiffness Controls Osteoblastic and Chondrocytic Differentiation of Mesenchymal Stem Cells without Exogenous Stimuli. PLoS One. 12, e0170312 (2017).
  25. Kumar, S. S., et al. The combined influence of substrate elasticity and surface-grafted molecules on the ex vivo expansion of hematopoietic stem and progenitor cells. Biomaterials. 34, 7632-7644 (2013).
  26. Higuchi, A., Iijima, T. DSC investigation of the states of water in poly(vinyl alcohol) membranes. Polymer. 26, 1207-1211 (1985).
  27. Higuchi, A., Iijima, T. DSC investigation of the states of water in poly(vinyl alcohol-co-itaconic acid) membranes. Polymer. 26, 1833-1837 (1985).
  28. Higuchi, A., et al. Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci Rep. 5, 18136 (2015).
  29. Wang, P. Y., et al. Pluripotency maintenance of amniotic fluid-derived stem cells cultured on biomaterials. J Mater Chem B. 3, 3858-3869 (2015).
  30. Muduli, S., et al. Proliferation and osteogenic differentiation of amniotic fluid-derived stem cells. J Mater Chem B. 5, 5345-5354 (2017).
  31. Muduli, S., et al. Stem cell culture on polyvinyl alcohol hydrogels having different elasticity and immobilized with ECM-derived oligopeptides. JPoly Eng. 37, 647 (2017).
  32. Chen, Y. M., et al. Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs. Sci Rep. 7, 45146 (2017).
  33. Higuchi, A., Ling, Q. D., Ko, Y. A., Chang, Y., Umezawa, A. Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chem Rev. 111 (5), 3021-3035 (2011).
  34. Higuchi, A., et al. Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Prog Polym Sci. 39, 1348-1374 (2014).
  35. Higuchi, A., et al. Stem cell therapies for myocardial infarction in clinical trials: bioengineering and biomaterial aspects. Lab Invest. 97, 1167-1179 (2017).
  36. Higuchi, A., et al. Stem cell therapies for reversing vision loss. Trends Biotechnol. 35, 1102-1117 (2017).

Play Video

Citar este artículo
Sung, T., Li, H., Higuchi, A., Ling, Q., Yang, J., Tseng, Y., Pan, C. P., Alarfaj, A. A., Munusamy, M. A., Kumar, S., Hsu, S., Murugan, K. Human Pluripotent Stem Cell Culture on Polyvinyl Alcohol-Co-Itaconic Acid Hydrogels with Varying Stiffness Under Xeno-Free Conditions. J. Vis. Exp. (132), e57314, doi:10.3791/57314 (2018).

View Video