Summary

使用激光光镊操纵隔离神经细胞在体外

Published: September 11, 2008
doi:

Summary

本视频介绍了使用激光镊子在体外培养的神经元的操纵。

Abstract

在这个文件和视频,我们描述了在我们的实验室中使用的协议,成人视网膜神经细胞在体外再生的细胞过程的研究目标的喜好。视网膜细胞培养的准备程序开始的解剖,消化和视网膜trituration,并结束孤立的视网膜细胞,制成的菜肴,尤其是使用激光镊子电镀。这些菜都分为一个的细胞粘附半和细胞防护剂一半。细胞的粘着面涂上一层SAL – 1抗体,我们的细胞生长提供了一个基板。其他胶粘剂基材,可用于其他类型的细胞。细胞防护剂侧涂有一层薄薄的聚HEMA。镀上的菜的聚甲基丙烯酸羟乙酯方的细胞被困激光镊子,运输,然后放在相邻SAL – 1侧到一个单元格,以创建一对。任何规模的细胞群的形成,应尽可能使用这种技术。 “激光镊子控制显微”的手段,调查人员可以选择移动的细胞和细胞之间的距离可以标准化。由于激光束通过透明培养皿的表面,细胞的选择和安置在一个封闭的,无菌的环境。细胞可以通过视频监控时间推移和使用所需的任何细胞生物学技术。这种技术可以帮助细胞间的相互作用的调查。

Protocol

光镊操纵分离的细胞在培养 光镊捕获势力产生的光的势头(Ashkin,1991年;。Ashkin等,1986) 。虽然这些势力很容易陷阱细胞悬浮液中,他们无法将坚持到表面的细胞。 因此,减少粘附在培养皿中的细胞被困点,聚- 2 – hydroxyethylmethacrylate(聚甲基丙烯酸羟乙酯)(Sigma公司,圣路易斯,密苏里州),与细胞的驱蚊剂无毒复合涂层的盖玻片以前受聘为内…

Discussion

光有气势,当光线折射,因为它通过细胞传递,一种力量是需要改变方向的势头。反过来,由于动量守恒定律,在相反方向的力量,必须在反应上一个单元格。 Ashkin(1991)表明,显微镜物镜聚焦的激光束产生的力将走向一个细胞,社会关注的焦点。尽管激光束产生只有几piconewtons武力,这股力量足以渡过难关中的单元格。甚少被水吸收的近红外波长是用于细胞(刘等,1995),以避免损坏。在我们的实验室中使?…

Acknowledgements

研究是由美国国立卫生研究院资助EY012031和EY0182175和FM柯比基金会的支持。

Materials

Material Name Tipo Company Catalogue Number Comment
25mm circle No.1 coverglass   VWR Scientific Inc., Westchester, PA 48380 080  
poly-2-hydroxyethylmethacrylate (poly-HEMA)   Sigma Chemical Co., St Louis, MO P-3932 Dissolve in 95% ethanol
Goat anti-mouse IgG antibody   Chemicon International, Temecula CA AP181 1mg in 1ml, dilute 10x for use
Sal-1 supernatant containing mouse anti-salamander antibody   generously provided by Dr. Peter MacLeish   Dr. Peter MacLeish, Morehouse School of Medicine, Atlanta, GA
3 mm bore 5ml pyrex disposable pipets   Corning Inc., Corning NY 7078A-5  
Cell culture dishes 35mm x 10mm   Corning inc., Corning NY 430165  
Sylgard 184 silicone elastomer kit   Dow Corning Corp., Midland MI    
Optical tweezers-microtool or laser tweezers   Cell Robotics Inc., Albuquerque NM    
1 W continuous wave diode laser of 980nm wavelength   Cell Robotics Inc., Albuquerque NM    
Axiovert 100 inverted light microscope   Carl Zeiss Inc., Thornwood, NY    
40x oil immersion plan neofluor objective lens   Carl Zeiss Inc., Thornwood, NY   Numerical aperture (N.A. 1.3)
Black and white CCD camera   Sony Corporation, Tokyo, Japan    
Computer and joystick with software   Cell Robotics Inc.   for controlling a motorized stage

Referencias

  1. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., Chu, S. Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles. Opt. Lett. 11, 288-290 (1986).
  2. Clarke, R. J., Hoegnason, K., Brimacombe, M., Townes-Anderson, E. Cone and rod cells have different target preferences in vitro as revealed by optical tweezers. Mol. Vision. 14, 706-720 (2008).
  3. Folkman, J., Moscona, A. Role of cell shape in growth control. Nature. 273, 345-349 (1978).
  4. Liu, Y., Cheng, D. K., Soneck, G. J., Berns, M. W., Chapman, C. F., Tromberg, B. J. Evidence of localized cell heating induced by infrared optical tweezers. Biophysical Journal. 68, 2137-2144 (1995).
  5. MacLeish, P. R., Barnstable, C. J., Townes-Anderson, E. Use of a monoclonal antibody as a substrate for mature neurons in vitro. Proc. Natl. Acad. Sci. USA. 80, 7014-7018 (1983).
  6. MacLeish, P. R., Townes-Anderson, E. Growth and synapse formation among major classes of adult salamander retinal neurons in vitro. Neuron. 1, 751-760 (1988).
  7. Mandell, J. W., MacLeish, P. R. Townes-Anderson E. Process outgrowth and synaptic varicosity formation by adult photoreceptors in vitro. J. Neurosci. 13, 3533-3548 (1993).
  8. Nachman-Clewner, M., Townes-Anderson, E. Injury-induced remodelling and regeneration of the ribbon presynaptic terminal in vitro. J. Neurocytol. 25, 597-613 (1996).
  9. Townes-Anderson, E., St Jules, R. S., Sherry, D. M., Lichtenberger, J., Hassanain, M. Micromanipulation of retinal neurons by optical tweezers. Mol. Vis.. 4, (1998).
check_url/es/911?article_type=t

Play Video

Citar este artículo
Clarke, R., Wang, J., Townes-Anderson, E. Using Laser Tweezers For Manipulating Isolated Neurons In Vitro. J. Vis. Exp. (19), e911, doi:10.3791/911 (2008).

View Video