Summary

Een protocol voor Lentiviral Transduction en Downstream Analyse van Intestinale Organoids

Published: April 20, 2015
doi:

Summary

In this video protocol we give a step by step explanation of lentiviral transduction in organoids of primary intestinal epithelium and of processing and downstream analysis of these cultures by quantitative RT-PCR, RNA-microarray and immunohistochemistry.

Abstract

Intestinal crypt-villus structures termed organoids, can be kept in sustained culture three dimensionally when supplemented with the appropriate growth factors. Since organoids are highly similar to the original tissue in terms of homeostatic stem cell differentiation, cell polarity and presence of all terminally differentiated cell types known to the adult intestinal epithelium, they serve as an essential resource in experimental research on the epithelium. The possibility to express transgenes or interfering RNA using lentiviral or retroviral vectors in organoids has increased opportunities for functional analysis of the intestinal epithelium and intestinal stem cells, surpassing traditional mouse transgenics in speed and cost. In the current video protocol we show how to utilize transduction of small intestinal organoids with lentiviral vectors illustrated by use of doxycylin inducible transgenes, or IPTG inducible short hairpin RNA for overexpression or gene knockdown. Furthermore, considering organoid culture yields minute cell counts that may even be reduced by experimental treatment, we explain how to process organoids for downstream analysis aimed at quantitative RT-PCR, RNA-microarray and immunohistochemistry. Techniques that enable transgene expression and gene knock down in intestinal organoids contribute to the research potential that these intestinal epithelial structures hold, establishing organoid culture as a new standard in cell culture.

Introduction

The intestinal epithelium is one of the most rapidly proliferating bodily tissues, which has caused it to attract wide interest from research on cancer and stem cells. In 2009 a technique was published to generate long lasting cultures of small intestinal crypts in matrigel, conserving a 3 dimensional structure1. These structures, termed intestinal organoids, can be cultured using standard techniques, with surrounding medium supplemented with a number of defined growth factors, including the Bmp-signaling pathway inhibitor noggin (Nog), the Wnt-signaling pathway enhancer rspondin 1 (Rspo1) and epidermal growth factor (Egf) all found to enhance intestinal proliferation2-4.

Organoids surpass traditional cancer cell lines in the aspects that they are non-mutated, have maintained stem cell hierarchy, display intact cellular polarization and exhibit differentiation into all cell lineages found in the nascent small intestinal epithelium. Since they can be transduced to carry transgenes or RNA interference constructs5, they are used to study specific genetic elements, outweighing experiments using transgenic mice in facets of cost and speed. Transgenic expression in organoids can be performed using either murine retroviral or lentiviral vectors6,7. Due to the limitations of murine retroviruses, capable of transducing mitotic cells exclusively8, lentiviral transduction is more frequently used for cells that are difficult to infect, such as organoids.

Virally transduced and stably expressing transgenic organoids can be used for a multitude of downstream analyses, including quantitative RNA analyses and immunohistochemistry. Taken together, culture of organoids from primary intestinal epithelial cells has evolved into a routine technique that is easy to implement without specific laboratory requirements, and has become the novel standard in cell culture in research on the intestinal epithelium.

Techniques of viral transduction and subsequent downstream analysis in organoids are tedious to perform and to aid organoid experiments we generated this video protocol, showing methods for lentiviral transduction of cultured organoids. We additionally show how correct processing of organoids can increase yield and therefore enhance performance of downstream analysis using RNA techniques or immunohistochemistry. In the protocol, organoids that are derived from small intestinal crypts were exclusively used, although the techniques described may be applied to colonic organoids as well.

Protocol

1. Preparation of Polyethylenimine (PEI) as Transfection Reagent Dissolve approximately 150 mg of PEI into 100 ml of H2O. Adjust solution to pH 7.4 by adding HCl until solution becomes clear and stir until completely dissolved. This may take between 10 and 60 min and add water to an end concentration of 1 mg/ml. When clear, filter the PEI solution through sterile 0.22 µm filter and store in a -80 °C freezer in aliquots of 5 ml. 2. Produ…

Representative Results

Organoid lentiviral transduction The technique of organoid transduction using lentiviral particles depends on correct handling of organoids prior and during transduction. Organoids (Figure 3A) were cultured and they were disrupted into single crypts (Figure 3B). As previously reported, these single crypts, when cultured in the presence of the GSK3 inhibitor Chir99021 became cystic crypts9 (Figure 3C). Subsequently organoids…

Discussion

The current video protocol describes lentiviral transduction of organoids from primary intestinal epithelium and downstream analysis of these organoids using quantitative RNA techniques and immunohistochemistry.

Lentiviral transduction is often performed in adherent or floating cells in culture plates. Since the three-dimensional structure of organoids renders them difficult to penetrate by viral particles, a number of methods to increase efficacy are used. Pretreatment of organoids using Chir…

Divulgations

The authors have nothing to disclose.

Acknowledgements

J. Heijmans is supported by a stipendium from the Dutch cancer foundation (KFW). G.R. van den Brink is supported by funding from the European Research Council under the European Community’s Seventh Framework Program (FP7/2007-2013)/European Research Council grant agreement number 241344 and by a VIDI grant from the Netherlands Organization for Scientific Research (GvdB).

Materials

Reagent Company  Cat. No.
Polyethylene imine polysciences 23966-2
DMEM medium Lonza BE12-614F
Fetal calf serum Lonza DE14-801F
Penicillin-streptomycin Invitrogen 15140-122
Glutamin Invitrogen 25030-024
matrigel BD BD 356231
Advanced DMEM-F12 Gibco 12634-010
N2 Invitrogen 17502-048
B27 Invitrogen 17504-044
N-acetyl cysteine Sigma A9165-1G
mouse Egf Invitrogen PMG8045
Hepes 1M Invitrogen 15630-056
glutamax 100x Invitrogen 35050-038
Chir 99021 axon 1386
Y27632  Sigma Y0503-5MG
polybrene Sigma 107689
nicotinamide Sigma N0636
Trypsin Lonza BE02-007E
puromycin sigma P 7255
Rneasy mini kit Qiagen 74106
b-mercaptoethanol Merck 8,057,400,250
Ovation Pico WTA system NuGen 3300-12
paraformaldehyde Sigma 252549-1L
glass vial conical 12mm x 75mm 5ml VWR LSUKM12
Eosin Yellowish VWR 1,159,350,025

References

  1. Sato, T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459 (7244), 262-265 (2009).
  2. Al-Nafussi, A. I., Wright, N. A. The effect of epidermal growth factor (EGF) on cell proliferation of the gastrointestinal mucosa in rodents. Virchows Archiv. B, Cell Pathology Including Molecular Pathology. 40 (1), 63-69 (1982).
  3. Haramis, A. P., et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science. 303 (5664), 1684-1686 (2004).
  4. Zhao, J., et al. R-spondin1, a novel intestinotrophic mitogen, ameliorates experimental colitis in mice. Gastroenterology. 132 (4), 1331-1343 (2007).
  5. Schwank, G., Andersson-Rolf, A., Koo, B. K., Sasaki, N., Clevers, H. Generation of BAC transgenic epithelial organoids. PLoS One. 8 (10), e76871 (2013).
  6. Koo, B. K., et al. Controlled gene expression in primary Lgr5 organoid cultures. Nature Methods. 9 (1), 81-83 (2012).
  7. Heijmans, J., et al. ER stress causes rapid loss of intestinal epithelial stemness through activation of the unfolded protein response. Cell Rep. 3 (4), 1128-1139 (2013).
  8. Roe, T., Reynolds, T. C., Yu, G., Brown, P. O. Integration of murine leukemia virus DNA depends on mitosis. The EMBO Journal. 12 (5), 2099-2108 (1993).
  9. Lau, W., et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature. 476 (7360), 293-297 (2011).
  10. Bahnson, A. B., et al. Centrifugal enhancement of retroviral mediated gene transfer. Journal Of Virological Methods. 54 (2-3), 131-143 (1995).
check_url/fr/52531?article_type=t

Play Video

Citer Cet Article
Van Lidth de Jeude, J. F., Vermeulen, J. L. M., Montenegro-Miranda, P. S., Van den Brink, G. R., Heijmans, J. A Protocol for Lentiviral Transduction and Downstream Analysis of Intestinal Organoids. J. Vis. Exp. (98), e52531, doi:10.3791/52531 (2015).

View Video