Summary

Neonatal Cardiac Scaffolds: Matrizes novas para Estudos Regenerativa

Published: November 05, 2016
doi:

Summary

Nestes estudos, que fornecem metodologia para novos, neonatal, andaimes cardíacas murinas para uso em estudos de regeneração.

Abstract

The only definitive therapy for end stage heart failure is orthotopic heart transplantation. Each year, it is estimated that more than 100,000 donor hearts are needed for cardiac transplantation procedures in the United States1-2. Due to the limited numbers of donors, only approximately 2,400 transplants are performed each year in the U.S.2. Numerous approaches, from cell therapy studies to implantation of mechanical assist devices, have been undertaken, either alone or in combination, in an attempt to coax the heart to repair itself or to rest the failing heart3. In spite of these efforts, ventricular assist devices are still largely used for the purpose of bridging to transplantation and the utility of cell therapies, while they hold some curative promise, is still limited to clinical trials. Additionally, direct xenotransplantation has been attempted but success has been limited due to immune rejection. Clearly, another strategy is required to produce additional organs for transplantation and, ideally, these organs would be autologous so as to avoid the complications associated with rejection and lifetime immunosuppression. Decellularization is a process of removing resident cells from tissues to expose the native extracellular matrix (ECM) or scaffold. Perfusion decellularization offers complete preservation of the three dimensional structure of the tissue, while leaving the bulk of the mechanical properties of the tissue intact4. These scaffolds can be utilized for repopulation with healthy cells to generate research models and, possibly, much needed organs for transplantation. We have exposed the scaffolds from neonatal mice (P3), known to retain remarkable cardiac regenerative capabilities,5-8 to detergent mediated decellularization and we repopulated these scaffolds with murine cardiac cells. These studies support the feasibility of engineering a neonatal heart construct. They further allow for the investigation as to whether the ECM of early postnatal hearts may harbor cues that will result in improved recellularization strategies.

Introduction

A insuficiência cardíaca é comum e mortal. É uma doença progressiva que resulta na diminuição da contractilidade do coração, o que prejudica o fluxo sanguíneo para os órgãos e deixa as necessidades metabólicas do corpo não satisfeitas. Estima-se que 5,7 milhões de americanos têm insuficiência cardíaca e é a principal causa de hospitalização nos Estados Unidos 9. O custo coletivo de tratamento de pacientes com insuficiência cardíaca nos Estados Unidos ultrapassa os US $ 300 bilhões de dólares por ano 9-10. O único tratamento definitivo para a insuficiência cardíaca em fase terminal é o transplante cardíaco ortotópico. Cada ano, estima-se que mais de 100.000 corações transplantados são necessários para os procedimentos de transplante cardíaco nos Estados Unidos 1-2. Devido ao número limitado de doadores, apenas cerca de 2.400 transplantes são realizados a cada ano em os EUA 2. Claramente, esta escassez de órgãos precisa ser tratada como outras estratégias são necessários para produzir órgãos adicionais para transplantação e, idealmente, estes órgãos seriam autóloga, de modo a evitar as complicações associadas com a rejeição e imunossupressão vida.

Cardiomiócitos adultos mamíferos demonstrar uma capacidade de regeneração limitada após lesão, mas evidências recentes sugerem que os corações neonatais mamíferos manter uma notável capacidade de regeneração após lesão 5-8. Especificamente, após a ressecção cirúrgica parcial, uma janela de regeneração foi descoberto entre o dia do nascimento e pós-natal 7. Este período de regeneração é caracterizada por uma falta de cicatriz fibrótica, formação de neo vascularização, libertação de factores angiogénicos a partir do epicárdio, e proliferação de cardiomiócitos 8/5 , 11. Esta janela de tempo regenerativa fornece o potencial para a utilização do coração neonatal como uma nova fonte de material para o desenvolvimento de um coração bioartificial.

A matriz extracelular é conhecida por fornecer pistas importantes para promover cardiomyocyte a proliferação e crescimento. Diferenças distintas na disponibilidade de moléculas nas matrizes neonatais e adultos de 12 e sua capacidade para promover a regeneração foram exploradas 13. matrizes adultos descelularizados têm sido utilizados em vários estudos para fornecer um andaime ECM para repovoamento celular e a geração de um coração bioartificial. Embora esses estudos, e novas descobertas em tecnologias de células-tronco, estão avançando rapidamente, vários obstáculos ainda precisam ser cumpridos. Por exemplo, as limitações em preservando a estrutura nativa da matriz, a integração celular na parede da matriz, e capacidade para suportar a proliferação e crescimento de todos os limites do sucesso desta abordagem. Enquanto atributos regenerativos superiores têm sido atribuídas ao coração neonatal, os aspectos práticos da utilização de um tecido tal têm limitado a sua exploração.

Com base na capacidade regenerativa demonstrada do coração neonatal, desenvolvemos novas matrizes através do desenvolvimento de umtécnica de descelularização para o coração do rato P3. O coração P3 foi escolhido para estes estudos, uma vez que está dentro da janela de regeneração cardíaca como anteriormente determinada 6 mas o coração é suficientemente grande para colheita, decellularize e recellularize. O objetivo deste estudo é demonstrar a viabilidade da criação de uma matriz de um coração neonatal mouse. Os nossos estudos fornecem evidência para a viabilidade de um minuto descelularizante, coração neonatal, mantendo a integridade estrutural e proteinácea do ECM. Nós também demonstrar a capacidade de recellularize este ECM cardíaca com mCherry cardiomiócitos expressam e examinamos esses cardiomiócitos para a expressão de vários marcadores cardíacos seguintes recelularização. Esta tecnologia permitirá que para o ensaio da superioridade de uma matriz neonatal para o desenvolvimento de um coração bioartificial.

Protocol

Todas as experiências de rato foram realizados de acordo com o Animal Welfare Act dos EUA e foram aprovados pelo Comitê de Cuidado e Uso Institucional Animal da Universidade de Minnesota. 1. Método para coração mouse Isolamento Euthanize um rato neonatal por decapitação com uma única lâmina de uso. Pincelar o tórax com 70% de etanol. Dissecar a pele do peito, cortando-o afastado da parede torácica com uma tesoura padrão enquanto puxa a pele lateralmente com um par de # …

Representative Results

decelularização Em média, o tempo para a descelularização de um coração P3 utilizando este protocolo é de aproximadamente 14 horas. dado um peso médio do coração de 23 mg para o recém-nascido P3. acelularidade Figura 3a mostra um coração neonatal P3 totalmente intacto (conjunto de montagem). Figura 3b mostra o mesmo coração seguinte descelulariza?…

Discussion

A dependência desta técnica em perfusões repetidas do coração faz a prevenção de uma embolia um componente crítico de um bom resultado. A partir do cateterismo do coração inicial nos Passos 2,2-2,6, para as mudanças de solução entre as etapas 2.8-2.14, existem manipulações que podem permitir a introdução de bolhas de ar que comprometem o fluxo de perfusato no miocárdio. Devido ao tamanho diminuto do coração neonatal, mesmo minúsculas bolhas na vasculatura pode causar um enfarte técnica, tornando as…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors gratefully acknowledge Ms. Cynthia DeKay for the preparation of the figures.

Materials

1. Materials For Mouse Heart Isolation
P1 mouse pups (as shown; B6;D2-Tg(Myh6*-mCherry)2Mik/J) Jackson Laboratories 21577 or equivalent
60 mm Culture dish BD Falcon 353004 or equivalent
Phosphate buffered saline pH 7.4 (sterile) Hyclone SH30256.01 or equivalent
Single Use Blade Stanley 28-510 or equivalent
Standard Scissors Moria Bonn (Fine Science Tools) 14381-43 or equivalent
Spring Scissors 10 cm Fine Science Tools 15024-10 or equivalent
Vannas Spring Scissors – 3mm Cutting Edge Fine Science Tools 15000-00 or equivalent
#5 Forceps Dumnot (Fine Science Tools) 11295-00 or equivalent
2. Materials For Decellularization
Inlet adaptor Chemglass CG-1013 autoclavable
Septum Chemglass CG-3022-99 autoclavable
1/8 in. ID x 3/8 OD C-Flex tubing Cole-Parmer  EW-06422-10 autoclavable
Male luer to 1/8" hose barb adaptor McMaster-Carr 51525K33 autoclavable
Female luer to 1/8" hose barb adaptor McMaster-Carr 51525K26 autoclavable
Prolene 7-0 surgical suture  Ethicon 8648G or equivalent
Ring stand Fisher Scientific S47807 or equivalent
Clamp Fisher Scientific 05-769-6Q or equivalent
Clamp regular holder Fisher Scientific 05-754Q or equivalent
60 cc syringe barrel  Coviden 1186000777T or equivalent
Beaker Kimble 14000250 or equivalent
22g x 1 Syringe Needle  BD 305155 or equivalent
12 cc syringe  Coviden 8881512878 or equivalent
3-way stop cock   Smith Medical  MX5311L or equivalent
22 x 1 g needle  BD 305155 or equivalent
PE50 tubing  BD Clay Adams Intramedic 427411 Must be formable by heat. Polyethylene recommended
1% SDS  Invitrogen 15525-017 Ultrapure grade recommended. Make up fresh solution and filter sterilize before use. 
1% Triton X-100  Sigma-Aldrich T8787 Make up fresh solution from a 10% stock and filter sterilize before use. 
Sterile dH2O Hyclone SH30538.02 Or MilliQ system purified water.
1X Pen/Strep  Corning CellGro 30-001-Cl or equivalent
3. Materials For DNA Quantitation
Proteinase K  Fisher BP1700 >30U/mg activity
KCl Sigma-Aldrich P9333 or equivalent
MgCl*6H2O Mallinckrodt 5958-04 or equivalent
Tween 20  Sigma-Aldrich P1379 or equivalent
Tris base/hydrochloride Sigma-Aldrich T1503/T5941 or equivalent
Pico-Green dsDNA assay kit Life Technologies  P7589 requires fluorimeter to read
4. Method for fixation and sectioning of tissue. 
Paraformaldehyde Sigma-Aldrich P6148 or equivalent
Gelatin Type A from porcine skin Sigma-Aldrich G2500 must be 300 bloom or greater
5. Method for tissue histology
Cryomolds 10 x 10 x 5mm Tissue-Tek 4565 or equivalent
Cryostat Hacker/Bright Model OTF or equivalent
Microscope Slides  25 x 75 x 1 mm Fisher Scientific 12-550-19 or equivalent
Hematoxylin 560  Surgipath/Leica Selectech  3801570 or equivalent
Ethanol Decon Laboratories 2701 or equivalent
Define Surgipath/Leica Selectech  3803590 or equivalent
Blue buffer  Surgipath/Leica Selectech  3802915 or equivalent
Alcoholic Eosin Y 515  Surgipath/Leica Selectech  3801615 or equivalent
Formula 83 Xylene substitute  CBG Biotech  CH0104B or equivalent
Permount Mounting Medium  Fisher Chemical  SP15-500 or equivalent
Collagen IV Antibody Rockland 600-401-106.1 or equivalent
α-Actinin Antibody Abcam AB9465 or equivalent
mCherry Antibody Abcam AB205402 or equivalent
NKX2.5 Antibody Santa Cruz Biotechnology SC-8697 or equivalent
Donkey anti-mouse AF488 Antibody Life Technology  A21202  or equivalent
Donkey anti-chicken AF594 Antibody Jackson Immunoresearch  703-585-155  or equivalent
Donkey anti-goat CY5 Antibody Jackson Immunoresearch  705-175-147 or equivalent
Fab Fragment Goat Anti-Rabbit IgG (H+L) AF594 Jackson Immunoresearch  111-587-003  or equivalent
Prolong Gold Antifade Mountant with DAPI ThermoFisher P36930 or equivalent
6. Isolation of neonatal ventricular cardiomyocytes using pre-plating.
HBSS (Ca, Mg Free) Hyclone SH30031.02 or equivalent
HEPES (1M) Corning CellGro 25-060-Cl or equivalent
Cell Strainer BD Falcon 352340 or equivalent
50 mL tube BD Falcon 352070 or equivalent
Primeria 100 mm plates Corning 353803 Primeria surface enhances fibroblast attachment promoting a higher myocyte purity
Trypsin Difco 215240 or equivalent
DNase II Sigma-Aldrich D8764 or equivalent
DMEM (Delbecco's Minimal Essential Media) Hyclone SH30022.01 or equivalent
Vitamin B12  Sigma-Aldrich V6629 or equivalent
Fibronectin coated plates  BD Bioscience 354501 or equivalent
Fetal bovine serum  Hyclone SH30910.03 or equivalent
Heart bioreactor glassware Radnoti Glass Technology 120101BEZ Must be sterilizable by autoclaving or gas.

References

  1. Yusen, R. D., et al. Registry of the International Society for Heart and Lung Transplantation: Thirty-second official adult lung and heart-lung transplantation report–2015. J Heart Lung Transplant. 34 (10), 1264-1277 (2015).
  2. Go, A. S., et al. Heart disease and stroke statistics–2014 update: A report from the american heart association. Circulation. 129 (3), e28-e292 (2014).
  3. Kapelios, C. J., Nanas, J. N., Malliaras, K. Allogeneic cardiosphere-derived cells for myocardial regeneration: current progress and recent results. Future Cardiol. 12 (1), 87-100 (2016).
  4. Ott, H. C., et al. Perfusion decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nat Med. 14 (2), 213-221 (2008).
  5. Porrello, E. R., Olson, E. O. A neonatal blueprint for cardiac regeneration. Stem Cell Research. 13 (3 Pt B), 556-570 (2014).
  6. Porrello, E. R., et al. Transient regenerative potential of the neonatal mouse heart. Science. 331 (6020), 1078-1080 (2011).
  7. Polizzotti, B. D., et al. Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window. Sci Transl Med. 7 (281), 281ra45 (2015).
  8. Jesty, S. A., et al. c-kit+ precursors support postinfarction myogenesis in the neonatal, but not adult, heart. Proc Natl Acad Sci U S A. 109 (33), 13380-13385 (2012).
  9. Ambrosy, A. P., et al. The Global Health and Economic Burden of Hospitalizations for Heart Failure: Lessons Learned From Hospitalized Heart Failure Registries. J Am Coll Cardiol. 63 (12), 1123-1133 (2014).
  10. Roger, V. L., et al. Executive Summary: Heart Disease and Stroke Statistics-2012 Update A Report From the American Heart Association. Circulation. 125 (22), 188-197 (2012).
  11. Kennedy-Lydon, T., Rosenthal, N. Cardiac regeneration: epicardial mediated repair. Proc R Soc B. 282 (1821), 2147-2172 (2015).
  12. Williams, C., Sullivan, K., Black, L. D. Partially Digested Adult Cardiac Extracellular Matrix Promotes Cardiomyocyte Proliferation In Vitro. Adv Healthcare Mat. 4 (10), 1545-1554 (2015).
  13. Borg, T. K., et al. Recognition of extracellular matrix components by neonatal and adult cardiac myocytes. Dev Biol. 104 (1), 86-96 (1984).
  14. Strober, W. Trypan blue exclusion test of cell viability. Curr Protoc Immnol. 111, A3-B1-3 (2015).
  15. Gilbert, T. W., Freund, J. M., Badylak, S. F. Quantification of DNA in biologic scaffold materials. J Surg Res. 152 (1), 135-139 (2009).
  16. Akhyari, P., et al. The quest for an optimized protocol for whole-heart decellularization: a comparison of three popular and a novel decellularization technique and their diverse effects on crucial extracellular matrix qualities. Tissue Eng Part C Methods. 17 (9), 915-926 (2011).
  17. Lu, T. Y., et al. Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun. 4 (2307), 1-11 (2013).
check_url/fr/54459?article_type=t

Play Video

Citer Cet Article
Garry, M. G., Kren, S. M., Garry, D. J. Neonatal Cardiac Scaffolds: Novel Matrices for Regenerative Studies. J. Vis. Exp. (117), e54459, doi:10.3791/54459 (2016).

View Video