Summary

Neonatal Cardiac Stilladser: Nye Matricer til regenerativ Studies

Published: November 05, 2016
doi:

Summary

I disse undersøgelser giver vi metodologi for nye, neonatale, murine hjerte-stilladser til brug i regenerative studier.

Abstract

The only definitive therapy for end stage heart failure is orthotopic heart transplantation. Each year, it is estimated that more than 100,000 donor hearts are needed for cardiac transplantation procedures in the United States1-2. Due to the limited numbers of donors, only approximately 2,400 transplants are performed each year in the U.S.2. Numerous approaches, from cell therapy studies to implantation of mechanical assist devices, have been undertaken, either alone or in combination, in an attempt to coax the heart to repair itself or to rest the failing heart3. In spite of these efforts, ventricular assist devices are still largely used for the purpose of bridging to transplantation and the utility of cell therapies, while they hold some curative promise, is still limited to clinical trials. Additionally, direct xenotransplantation has been attempted but success has been limited due to immune rejection. Clearly, another strategy is required to produce additional organs for transplantation and, ideally, these organs would be autologous so as to avoid the complications associated with rejection and lifetime immunosuppression. Decellularization is a process of removing resident cells from tissues to expose the native extracellular matrix (ECM) or scaffold. Perfusion decellularization offers complete preservation of the three dimensional structure of the tissue, while leaving the bulk of the mechanical properties of the tissue intact4. These scaffolds can be utilized for repopulation with healthy cells to generate research models and, possibly, much needed organs for transplantation. We have exposed the scaffolds from neonatal mice (P3), known to retain remarkable cardiac regenerative capabilities,5-8 to detergent mediated decellularization and we repopulated these scaffolds with murine cardiac cells. These studies support the feasibility of engineering a neonatal heart construct. They further allow for the investigation as to whether the ECM of early postnatal hearts may harbor cues that will result in improved recellularization strategies.

Introduction

Hjertesvigt er almindelig og dødbringende. Det er en fremadskridende sygdom, som resulterer i nedsat kontraktilitet af hjertet, som hæmmer blodtilførslen til organer og efterlader de metaboliske krav af kroppen udækket. Det anslås, at 5,7 millioner amerikanere har hjertesvigt, og det er den primære årsag til indlæggelse i USA 9. Den kollektive udgifter til behandling af patienter i hjertesvigt i USA overstiger $ 300 milliarder dollars om året 9-10. Den eneste definitive terapi for slutstadiet hjertesvigt er ortotopisk hjertetransplantation. Hvert år skønnes det, at der er behov for mere end 100.000 donorhjerter for hjertetransplantation procedurer i USA 1-2. På grund af de begrænsede antal donorer, er det kun ca. 2.400 transplantationer udføres hvert år i USA 2. Det er klart, skal løses som andre strategier er forpligtet til at producere yderligere organer til transplanta dette organ mangeltion og helst ville disse organer være autologe for at undgå komplikationerne forbundet med afvisning og levetid immunosuppression.

Pattedyr voksne cardiomyocytter demonstrerer en begrænset regenerativ kapacitet på skade, men nye oplysninger tyder på, at pattedyr neonatale hjerter opretholde en bemærkelsesværdig regenerationsevne efter skade 5-8. Specifikt efter delvis kirurgisk resektion, en regenerativ vindue er blevet opdaget mellem fødsel og postnatal dag 7. Denne regenerative periode er kendetegnet ved en mangel på fibrotisk ar, dannelse af neovaskularisering, frigivelse af angiogene faktorer fra epicardiet og cardiomyocyte proliferation 5-8 , 11. Denne regenerative tidsvindue tilvejebringer mulighederne for at anvende den neonatale hjertet som en ny kilde til materiale til udvikling af en biosyntetiske hjerte.

Den ekstracellulære matrix er kendt at tilvejebringe vigtige signaler til fremme cardiomyocyte spredning og vækst. Tydelige forskelle i tilgængeligheden af molekyler i de neonatale og voksne matricer 12 og deres evne til at fremme regenerering er blevet udforsket 13. Decellulariseret voksne matrixer har været anvendt i flere undersøgelser for at tilvejebringe en ECM stillads for cellulær repopulation og genereringen af ​​et biosyntetiske hjerte. Mens disse undersøgelser, og nye opdagelser i stamceller teknologier, der udvikler sig hurtigt, flere forhindringer er endnu ikke opfyldt. For eksempel begrænsninger i bevarelsen native struktur af matrixen, cellulære integration i matricen væg, og evne understøtte proliferation og vækst al grænse succesen af ​​denne tilgang. Mens overlegne regenerative egenskaber er blevet tilskrevet den neonatale hjerte, har de praktiske aspekter af at anvende et sådant væv begrænset sin udforskning.

Baseret på den demonstreret regenerationsevne det neonatale hjerte, har vi udviklet hidtil ukendte matricer ved at udvikle enTeknikken med decellularization for P3 mus hjerte. P3 hjerte blev valgt til disse undersøgelser, da det er inden for vinduet af hjertets regenerering som tidligere bestemte 6 men hjertet er stor nok til høst, decellularize og recellularize. Målet med denne undersøgelse er at demonstrere muligheden for at skabe en matrix fra en neonatal mus hjerte. Vores undersøgelser giver bevis for muligheden for decellularizing et minut, neonatal hjerte samtidig med at den strukturelle og proteinholdige integritet ECM. Vi viser også evnen til at recellularize denne cardiac ECM med mCherry udtrykker cardiomyocytter, og vi har undersøgt disse cardiomyocytter for ekspression af forskellige hjerte-markører efter recellularization. Denne teknologi vil muliggøre afprøvning af overlegenhed en neonatal matrix for udviklingen af ​​en biosyntetiske hjerte.

Protocol

Alle mus blev udført i henhold til US dyreværnsloven og blev godkendt af Institutional Animal Care og brug Udvalg ved University of Minnesota. 1. Metode til Mouse Heart Isolation Aflive en neonatal mus ved halshugning med en enkelt anvendelse klinge. Svaber brystkassen med 70% ethanol. Skær skindet fra brystet ved at skære det væk fra brystvæggen med standard saks, mens du trækker huden lateralt med et par # 5 pincet. Perforere maven lige ringere end brystbenet med…

Representative Results

Decellularization I gennemsnit tid til decellularization af et P3 hjerte ved hjælp af denne protokol er cirka 14 timer. givet en gennemsnitlig hjertevægt af 23 mg til P3 nyfødte. Acellularity Figur 3a viser et fuldt intakt P3 neonatal hjerte (hel mount). Figur 3b viser den samme hjerte efter decellularization. Figurerne 4a og 4b viser hematoxy…

Discussion

Afhængigheden af ​​denne teknik på gentagne perfusioner af hjertet gør undgåelse af en blodprop et afgørende element i et vellykket resultat. Fra den indledende kateterisation af hjertet i trin 2,2-2,6, at ændringerne i løsning mellem trin 2.8-2.14, er der manipulationer, der kan tillade indføring af luftbobler som kompromis strømmen af ​​perfusatet i myokardiet. På grund af det ringe omfang af det neonatale hjerte, kan selv små bobler i vaskulaturen forårsage en teknisk infarkt, således gøre decel…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors gratefully acknowledge Ms. Cynthia DeKay for the preparation of the figures.

Materials

1. Materials For Mouse Heart Isolation
P1 mouse pups (as shown; B6;D2-Tg(Myh6*-mCherry)2Mik/J) Jackson Laboratories 21577 or equivalent
60 mm Culture dish BD Falcon 353004 or equivalent
Phosphate buffered saline pH 7.4 (sterile) Hyclone SH30256.01 or equivalent
Single Use Blade Stanley 28-510 or equivalent
Standard Scissors Moria Bonn (Fine Science Tools) 14381-43 or equivalent
Spring Scissors 10 cm Fine Science Tools 15024-10 or equivalent
Vannas Spring Scissors – 3mm Cutting Edge Fine Science Tools 15000-00 or equivalent
#5 Forceps Dumnot (Fine Science Tools) 11295-00 or equivalent
2. Materials For Decellularization
Inlet adaptor Chemglass CG-1013 autoclavable
Septum Chemglass CG-3022-99 autoclavable
1/8 in. ID x 3/8 OD C-Flex tubing Cole-Parmer  EW-06422-10 autoclavable
Male luer to 1/8" hose barb adaptor McMaster-Carr 51525K33 autoclavable
Female luer to 1/8" hose barb adaptor McMaster-Carr 51525K26 autoclavable
Prolene 7-0 surgical suture  Ethicon 8648G or equivalent
Ring stand Fisher Scientific S47807 or equivalent
Clamp Fisher Scientific 05-769-6Q or equivalent
Clamp regular holder Fisher Scientific 05-754Q or equivalent
60 cc syringe barrel  Coviden 1186000777T or equivalent
Beaker Kimble 14000250 or equivalent
22g x 1 Syringe Needle  BD 305155 or equivalent
12 cc syringe  Coviden 8881512878 or equivalent
3-way stop cock   Smith Medical  MX5311L or equivalent
22 x 1 g needle  BD 305155 or equivalent
PE50 tubing  BD Clay Adams Intramedic 427411 Must be formable by heat. Polyethylene recommended
1% SDS  Invitrogen 15525-017 Ultrapure grade recommended. Make up fresh solution and filter sterilize before use. 
1% Triton X-100  Sigma-Aldrich T8787 Make up fresh solution from a 10% stock and filter sterilize before use. 
Sterile dH2O Hyclone SH30538.02 Or MilliQ system purified water.
1X Pen/Strep  Corning CellGro 30-001-Cl or equivalent
3. Materials For DNA Quantitation
Proteinase K  Fisher BP1700 >30U/mg activity
KCl Sigma-Aldrich P9333 or equivalent
MgCl*6H2O Mallinckrodt 5958-04 or equivalent
Tween 20  Sigma-Aldrich P1379 or equivalent
Tris base/hydrochloride Sigma-Aldrich T1503/T5941 or equivalent
Pico-Green dsDNA assay kit Life Technologies  P7589 requires fluorimeter to read
4. Method for fixation and sectioning of tissue. 
Paraformaldehyde Sigma-Aldrich P6148 or equivalent
Gelatin Type A from porcine skin Sigma-Aldrich G2500 must be 300 bloom or greater
5. Method for tissue histology
Cryomolds 10 x 10 x 5mm Tissue-Tek 4565 or equivalent
Cryostat Hacker/Bright Model OTF or equivalent
Microscope Slides  25 x 75 x 1 mm Fisher Scientific 12-550-19 or equivalent
Hematoxylin 560  Surgipath/Leica Selectech  3801570 or equivalent
Ethanol Decon Laboratories 2701 or equivalent
Define Surgipath/Leica Selectech  3803590 or equivalent
Blue buffer  Surgipath/Leica Selectech  3802915 or equivalent
Alcoholic Eosin Y 515  Surgipath/Leica Selectech  3801615 or equivalent
Formula 83 Xylene substitute  CBG Biotech  CH0104B or equivalent
Permount Mounting Medium  Fisher Chemical  SP15-500 or equivalent
Collagen IV Antibody Rockland 600-401-106.1 or equivalent
α-Actinin Antibody Abcam AB9465 or equivalent
mCherry Antibody Abcam AB205402 or equivalent
NKX2.5 Antibody Santa Cruz Biotechnology SC-8697 or equivalent
Donkey anti-mouse AF488 Antibody Life Technology  A21202  or equivalent
Donkey anti-chicken AF594 Antibody Jackson Immunoresearch  703-585-155  or equivalent
Donkey anti-goat CY5 Antibody Jackson Immunoresearch  705-175-147 or equivalent
Fab Fragment Goat Anti-Rabbit IgG (H+L) AF594 Jackson Immunoresearch  111-587-003  or equivalent
Prolong Gold Antifade Mountant with DAPI ThermoFisher P36930 or equivalent
6. Isolation of neonatal ventricular cardiomyocytes using pre-plating.
HBSS (Ca, Mg Free) Hyclone SH30031.02 or equivalent
HEPES (1M) Corning CellGro 25-060-Cl or equivalent
Cell Strainer BD Falcon 352340 or equivalent
50 mL tube BD Falcon 352070 or equivalent
Primeria 100 mm plates Corning 353803 Primeria surface enhances fibroblast attachment promoting a higher myocyte purity
Trypsin Difco 215240 or equivalent
DNase II Sigma-Aldrich D8764 or equivalent
DMEM (Delbecco's Minimal Essential Media) Hyclone SH30022.01 or equivalent
Vitamin B12  Sigma-Aldrich V6629 or equivalent
Fibronectin coated plates  BD Bioscience 354501 or equivalent
Fetal bovine serum  Hyclone SH30910.03 or equivalent
Heart bioreactor glassware Radnoti Glass Technology 120101BEZ Must be sterilizable by autoclaving or gas.

References

  1. Yusen, R. D., et al. Registry of the International Society for Heart and Lung Transplantation: Thirty-second official adult lung and heart-lung transplantation report–2015. J Heart Lung Transplant. 34 (10), 1264-1277 (2015).
  2. Go, A. S., et al. Heart disease and stroke statistics–2014 update: A report from the american heart association. Circulation. 129 (3), e28-e292 (2014).
  3. Kapelios, C. J., Nanas, J. N., Malliaras, K. Allogeneic cardiosphere-derived cells for myocardial regeneration: current progress and recent results. Future Cardiol. 12 (1), 87-100 (2016).
  4. Ott, H. C., et al. Perfusion decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nat Med. 14 (2), 213-221 (2008).
  5. Porrello, E. R., Olson, E. O. A neonatal blueprint for cardiac regeneration. Stem Cell Research. 13 (3 Pt B), 556-570 (2014).
  6. Porrello, E. R., et al. Transient regenerative potential of the neonatal mouse heart. Science. 331 (6020), 1078-1080 (2011).
  7. Polizzotti, B. D., et al. Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window. Sci Transl Med. 7 (281), 281ra45 (2015).
  8. Jesty, S. A., et al. c-kit+ precursors support postinfarction myogenesis in the neonatal, but not adult, heart. Proc Natl Acad Sci U S A. 109 (33), 13380-13385 (2012).
  9. Ambrosy, A. P., et al. The Global Health and Economic Burden of Hospitalizations for Heart Failure: Lessons Learned From Hospitalized Heart Failure Registries. J Am Coll Cardiol. 63 (12), 1123-1133 (2014).
  10. Roger, V. L., et al. Executive Summary: Heart Disease and Stroke Statistics-2012 Update A Report From the American Heart Association. Circulation. 125 (22), 188-197 (2012).
  11. Kennedy-Lydon, T., Rosenthal, N. Cardiac regeneration: epicardial mediated repair. Proc R Soc B. 282 (1821), 2147-2172 (2015).
  12. Williams, C., Sullivan, K., Black, L. D. Partially Digested Adult Cardiac Extracellular Matrix Promotes Cardiomyocyte Proliferation In Vitro. Adv Healthcare Mat. 4 (10), 1545-1554 (2015).
  13. Borg, T. K., et al. Recognition of extracellular matrix components by neonatal and adult cardiac myocytes. Dev Biol. 104 (1), 86-96 (1984).
  14. Strober, W. Trypan blue exclusion test of cell viability. Curr Protoc Immnol. 111, A3-B1-3 (2015).
  15. Gilbert, T. W., Freund, J. M., Badylak, S. F. Quantification of DNA in biologic scaffold materials. J Surg Res. 152 (1), 135-139 (2009).
  16. Akhyari, P., et al. The quest for an optimized protocol for whole-heart decellularization: a comparison of three popular and a novel decellularization technique and their diverse effects on crucial extracellular matrix qualities. Tissue Eng Part C Methods. 17 (9), 915-926 (2011).
  17. Lu, T. Y., et al. Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun. 4 (2307), 1-11 (2013).
check_url/fr/54459?article_type=t

Play Video

Citer Cet Article
Garry, M. G., Kren, S. M., Garry, D. J. Neonatal Cardiac Scaffolds: Novel Matrices for Regenerative Studies. J. Vis. Exp. (117), e54459, doi:10.3791/54459 (2016).

View Video