Summary

组蛋白3赖氨酸 79 Dimethylation 标记沉淀后神经祖细胞的分离培养

Published: January 26, 2018
doi:

Summary

我们提出一种有效和可重复的方法, 分离和培养胚胎和产后脑组织中的神经祖细胞染色质沉淀 (芯片) 的组蛋白3赖氨酸 79 dimethylation (H3K79me2)-一个组蛋白标记位于组蛋白3的球状域。

Abstract

大脑发育是一个复杂的过程, 它是由来说的梯度和不同的转录程序控制在颞空间的方式。此外, 后生染色质修饰, 如组蛋白甲基化, 有一个重要的作用, 建立和维护特定的细胞命运在这个过程中。大多数组蛋白甲基化发生在灵活的组蛋白尾部, 这是组蛋白修饰剂、橡皮擦和组蛋白的阅读蛋白。相比之下, H3K79 甲基化位于组蛋白3的球状领域, 并与不同的发育功能有牵连。H3K79 甲基化是进化保守的, 可以从智人酿酒酵母的种类繁多的物种中发现。改变发生在不同的细胞数量的生物体内, 包括神经祖。H3K79 甲基化在组蛋白3的球状域中的位置使得难以评估。在这里, 我们提出的方法分离和培养皮层祖细胞 (党) 从胚胎皮质脑组织 (E11.5-E14.5) 或小脑颗粒神经元祖 (CGNPs) 从产后组织 (P5-P7), 并有效 immunoprecipitateH3K79me2 定量 PCR (qPCR) 和全基因组测序。

Introduction

大脑的感官、运动和认知功能非常复杂, 容易受到物理和环境变化的影响。大脑由后、中、前脑的三一般部分组成, 它们是紧密相连的。前脑内, 端可分为背部端 (DT) 和腹端 (VT)。小鼠的 DT 由六皮质层组成, 它们是在 E11.5 和 E18.5 之间形成的, 以 “内而外” 的方式1。VT 包括节主教在发育中, 后来形成基底节2,3。几种细胞类型可以归类在哺乳动物中枢神经系统, 如神经元, 星形胶质细胞, 或突4, 在颞空间的方式5发展。首先, 神经祖细胞 (npc) 产生不同类型的神经元, 神经元在 VT, 和投射神经元在 DT, 后来到神经胶质细胞 (例如, 星形细胞6)。在皮质发育过程中, 首先形成了含有卡哈尔 Retzius 细胞的最浅层 (I 层)。然后, 在 E12.5 和 E14.5 之间, npc 产生更深的神经元层 (VI, V), 而在14.5 和16.5 之间, 祖细胞引起上层 (IV-II) 神经元7,8。神经元的身份是由不同的形态诱导的颞空间转录程序和另外的后生程序2指定的。

小脑, 这是牵连在运动协调, 位于后脑和发展之间的 E10 和粗略 P20 在小鼠9。它包含小脑皮质和小脑核10。成人小脑皮质包括三层, 最外层的分子层, 浦肯野细胞层, 和包含颗粒状神经元的最里层的颗粒层10。小脑颗粒细胞是最小的神经元, 代表了脊椎动物大脑中大约80% 的神经元11。它们从位于外部生发区的前驱体发展而来, 并通过浦肯野细胞层迁移到它们的目标12。象在端, 小脑的发展由几个重要来说调控, 有具体时间和空间相关的作用和创始被定义的转录节目10

皮质和小脑层的发育由特定来说的转录表达控制, 因此, 由 DNA 的染色质状态。在一个简化的观点, 染色质状态可以被划分成染色质作为转录活跃和异作为转录沈默区域。核作为染色质的基本单位, 包含了每个核心组蛋白 H2A、H2B、H3 和 H4 的两个拷贝, 周围有147碱基对 DNA13。组蛋白是高度后翻译修饰的甲基化, 乙酰化, 磷酸, 泛, sumo, ADP adp-, 脱, 和脯氨酸异构化反应14,15。组蛋白赖氨酸甲基化被认为是最稳定的蛋白修饰, 控制转录, 复制, 重组16, DNA 损伤的反应,17, 和基因印记18。Lysines 可以是单、di 或三甲基化的19 , 并且不仅出现在可访问的组蛋白尾部, 而且还显示在组组的球状域中20。具体的 h3k4 在 H3K4 和 H3K36 主要与染色质, 具体 h3k4 在 H3K9, H3K27, 或 H4K20 主要在异地区发现, 虽然所有残留物位于组蛋白尾部14, 19,21。H3K79 甲基化位于组蛋白球状域内, 并与转录活性有关, 但也与转录惰性基因的区域22有关。由于在酵母、小牛胸腺、鸡肉和人类23中观察到了这种改变, 因此在进化上是保守的。H3K79 单, di, 和 trimethylation (H3K79me1, me2, me3) 是由组蛋白甲基 DOT1L24,25和核集合域含蛋白质 2 (Nsd2)26。DOT1L 与增殖、DNA 修复和细胞 reprograming27有牵连。Dot1l在小鼠中的丢失导致在发育阶段 E10.528,29周围的产前死亡。在心脏发育和 myocardiocyte 分化期间, DOT1L 是基因表达调控的关键30。在中枢神经系统中, DOT1L 功能可能牵连神经管发育31, 它涉及在前脑发育32期间抑制Tbr1表达, 并可在 ER 应力调节中起作用响应基因33。H3K79me 的上下文相关激活或镇压行动, 特别是与在体内情况象中央神经系统的发展, 是到目前为止仅部份地被了解的32。由于 H3K79 甲基化位于组蛋白3的球状域中, 因此与灵活的组蛋白尾23的修饰相比, 阻的可访问性较差。为了了解 H3K79 甲基化的作用, 需要可靠和可重复的分析方法来确定其位置和基因组环境。在本方法中, 我们提出了不同的神经祖细胞的分离方法 (党用于小脑的皮质和 CGNPs), 有效的 DOT1L 抑制剂治疗, 以及在不同时间通过 qPCR 或测序来分析 H3K79 甲基化的芯片方法在皮质和小脑发育过程中的点。有关协议及其可能性的概述, 请参见图 1

Protocol

弗莱堡大学的动物福利委员会和地方当局批准了以下协议中提到的所有动物实验 (G12/13, G16/11)。 1. 准备工作 党分离制剂 建立定时交配, 以获得胚胎在不同阶段的皮层发育 (E11.5 和 E14.5)。使用小鼠的应变 NMRI (海军医学研究所), 这是至少8周的老。交配后, 考虑一个积极的阴道堵塞在 E0.5。 要有足够的材料, 在 E12.5 或 E14.5 的皮质上用一小块 NMRI…

Representative Results

神经祖分离、培养、H3K79me2 芯片和芯片分析方法的一般方案:图 1显示了一个流程图, 用于在胚胎发育期或产后阶段的小脑颗粒神经元祖细胞的不同时间点执行 H3K79me2 芯片。作为第一步, 大脑必须被孤立, 端 (在 E11.5 和 E14.5 之间) 或小脑 (P5-P7) 必须被检索。通过将端划分为 DT 和 VT, 可以分析不同区域。随后组织将匀浆和神经祖细胞分离。现?…

Discussion

有两种主要的方法来执行染色质沉淀, 以检测组蛋白的修饰, 转录因子的染色体的占有率, 蛋白的读者, 作家, 或橡皮擦。一种是用核酸消化的原生芯片法, 沉淀的原染色质, 另一种是采用粉煤灰固定的, 被剪切的染色质, 其中核和其他 dna 附着的蛋白质与 dna 共价键结合的方法。39. 本机芯片具有较高的抗体检测率, 应适用于组蛋白甲基化, 因为染色质和组蛋白 h3k4 在整个芯片中相对稳?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢亨利埃特 Bertemes 在实验室中帮助建立 CGN 种植协议。本方法通过对电视的资助, 由 DFG 资助的 CRC992 医学遗传学研究支持。作者承认弗莱堡星系小组的支持: Pavankumar Videm, bj Grüning 和 Prof., 生物信息学, 德国弗赖堡大学, 由合作研究中心资助的992医学遗传学 (Backofen 补助金 DFG 992/1 2012)并且德国联邦教育和研究部 (BMBF 授予 031 A538A RBC (de。NBI))。

Materials

Anti-GAPDH Abcam ab8245 Category: Antibody
Abbreviation/Comment: Immunoblot dilution 1:5000
Anti-H3 Abcam ab1791 Category: Antibody
Abbreviation/Comment: Immunoblot dilution 1:3000
Anti-H3K79me2 Diagenode pAb-051-050 Category: Antibody
Abbreviation/Comment: ChIP antibody
Anti-H3K79me2 Abcam ab-051-050 Category: Antibody
Abbreviation/Comment: Immunoblot dilution 1:1000
Anti-rabbit-IgG Diagenode C15410206 Category: Antibody
Abbreviation/Comment: ChIP Ctrl antibody
Anti-Tubulin alpha Abcam ab108629 Category: Antibody
Abbreviation/Comment: Immunoblot dilution 1:3000
Apo-Transferrin (1 mg/ml) Sigma-Aldrich T1147 Category: Cell culture
Abbreviation/Comment: For CCM
B27 Supplement (50x) Life Technologies 17504044 Category: Cell culture
Abbreviation/Comment: For CCM
Bioanalyzer Agilent technologies G2940CA Category: ChIP
Abbreviation/Comment: For analysis of sheared chromatin
Bioruptor NextGen Diagenode B01020001 Category: ChIP
Abbreviation/Comment: Ultrasonicator
Boric acid pH 8.4 Sigma Aldrich B6768 Category: Cell culture
Abbreviation/Comment: For CPC culturing
CFX Connect RT PCR Detection System Bio-Rad 1855201 Category: ChIP Analysis
Abbreviation/Comment: Detection system for qPCR
DMEM-F12 Life Technologies 11320-033 Category: Cell culture
Abbreviation/Comment: For CGM
Dynabeads Protein A Invitrogen 10001D Category: ChIP
Abbreviation/Comment: Magnetic beads, for ChIP
EPZ-5676 Selleckchem S7062 Category: DOT1L inhibition
Abbreviation/Comment: For DOT1L inhibition in cell culture
Ethylenediamine tetraacetic acid SERVA 39760.01 Category: ChIP
Abbreviation/Comment: EDTA
Fetal Bovine Serum 10% (v/v) Gibco 10082147 Category: Cell culture
Abbreviation/Comment: For CPC isolation and CGM
Glucose Sigma-Aldrich G5767 Category: Cell culture
Abbreviation/Comment: For CGNP isolation
Glutathione (1.25 mg/ml) Sigma-Aldrich G4251 Category: Cell culture
Abbreviation/Comment: For CCM
Glycine Carl Roth 3187 Category: ChIP
Abbreviation/Comment: For cell fixation
GoTaq mastermix Promega A6002 Category: ChIP Analysis
Abbreviation/Comment: DNA polymerase master mix for qPCR
Hank’s Balanced Salt Solution Life Technologies 14025-100 Category: Cell culture
Abbreviation/Comment: HBSS
L-glutamine (200 mM) Life Technologies 25030081 Category: Cell culture
Abbreviation/Comment: For CCM
Laminin Sigma-Aldrich L2020 Category: Cell culture
Abbreviation/Comment: For CPC culturing
Lithium chloride Sigma-Aldrich L4408 Category: ChIP
Abbreviation/Comment: LiCl
N2 supplement Life Technologies 17502048 Category: Cell culture
Abbreviation/Comment: For CGM
NanoDrop 3300 Thermo Fisher 3300 Category: ChIP
Abbreviation/Comment: Fluorospectrometer for DNA quantification
NEB Next Ultra DNA Library Prep Kit for Illumina NEB E7645S Category: ChIP Analysis
Abbreviation/Comment: Kit for Library preparation
NEBNext Multiplex Oligos for Illumina NEB E7335 Category: ChIP Analysis
Abbreviation/Comment: Oligos for Library preparation
Neurobasal medium Gibco 21103049 Category: Cell culture
Abbreviation/Comment: For CCM
NP-40 Alternative Calbiochem 492016 Category: ChIP
Abbreviation/Comment: For ChIP buffer
Paraformaldehyde Carl Roth 335 Category: ChIP
Abbreviation/Comment: PFA, for cell fixation
Penicillin-Streptomycin-Neomycin 1% (v/v) Life Technologies 15640055 Category: Cell culture
Abbreviation/Comment: PSN, for CCM and CGM
Phosphate buffered saline Life Technologies 10010023 Category: Cell culture
Abbreviation/Comment: PBS, for CPC isolation
PicoGreen Kit Thermo Fisher P11496 Category: ChIP Analysis
Abbreviation/Comment: Visualizing dye for DNA quantification
Poly-D-lysine Sigma-Aldrich P6407 Category: Cell culture
Abbreviation/Comment: For CGNP isolation
Poly-L-ornithine hydrobromide Sigma Aldrich P3655 Category: Cell culture
Abbreviation/Comment: For CPC culturing
Potassium chloride Thermo Fisher AM9640G Category: Cell culture
Abbreviation/Comment: KCl, for CGM
Protease inhibitor Roche 4693159001 Category: ChIP
Abbreviation/Comment: For ChIP
Proteinase K Sigma-Aldrich 3115879001 Category: ChIP
Abbreviation/Comment: For ChIP
Qiagen MinElute Qiagen 28004 Category: ChIP
Abbreviation/Comment: Kit for DNA purification
RNAse Sigma-Aldrich R6513 Category: ChIP
Abbreviation/Comment: For ChIP
SGC0946 Selleckchem S7079 Category: DOT1L inhibition
Abbreviation/Comment: For DOT1L inhibition in cell culture
Sodium bicarbonate Carl Roth 8551.1 Category: ChIP
Abbreviation/Comment: for Elution buffer
Sodium chloride Carl Roth 9265 Category: ChIP
Abbreviation/Comment: NaCl, for ChIP buffer
Sodium deoxycholate Sigma-Aldrich 30970 Category: ChIP
Abbreviation/Comment: For ChIP
Sodium dodecylsulfate Carl Roth 183 Category: ChIP
Abbreviation/Comment: SDS, for ChIP
Sonic hedgehock (SHH) Sigma-Aldrich SRP6004 Category: Cell culture
Abbreviation/Comment: For CGNP isolation
Superoxide dismutase (1mg/ml) Sigma-Aldrich S7571 Category: Cell culture
Abbreviation/Comment: For CCM
Tris(hydroxymethyl)aminomethane Carl Roth 9090 Category: ChIP
Abbreviation/Comment: TRIS, for ChIP buffer
Triton X-100 Carl Roth X100 Category: ChIP
Abbreviation/Comment: For ChIP buffer
Trypsin-EDTA 0,05% (w/v) Sigma Aldrich 59417C Category: Cell culture
Abbreviation/Comment: For CPC isolation
Tween20 Carl Roth 28320 Category: ChIP
Abbreviation/Comment: For bead preparation
Other Lab devices: Neubauer counting chamber, Incubator, Rotator, Shaker, Disection set, Water bath
CCM: Cortical cell medium
CGM: CGNP cell culture medium

References

  1. Molyneaux, B. J., Arlotta, P., Menezes, J. R. L., Macklis, J. D. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 8, 427-437 (2007).
  2. Kandel, E. R., Squire, L. R. Neuroscience: breaking down scientific barriers to the study of brain and mind. Science. 290, 1113-1120 (2000).
  3. Götz, M., Sommer, L. Cortical development: the art of generating cell diversity. Dev. Camb. Engl. 132, 3327 (2005).
  4. Hirabayashi, Y., Gotoh, Y. Epigenetic control of neural precursor cell fate during development. Nat. Rev. Neurosci. 11, 377-388 (2010).
  5. Davis, A. A., Temple, S. A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature. 372, 263-266 (1994).
  6. Sauvageot, C. M., Stiles, C. D. Molecular mechanisms controlling cortical gliogenesis. Curr. Opin. Neurobiol. 12, 244-249 (2002).
  7. McConnell, S. K., Kaznowski, C. E. Cell cycle dependence of laminar determination in developing neocortex. Science. 254, 282-285 (1991).
  8. Desai, A. R., McConnell, S. K. Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Dev. Camb. Engl. 127, 2863-2872 (2000).
  9. Glickstein, M., Strata, P., Voogd, J. Cerebellum: history. Neurosciences. 162, 549-559 (2009).
  10. Marzban, H., et al. Cellular commitment in the developing cerebellum. Front. Cell. Neurosci. 8, (2015).
  11. Azevedo, F. A. C., et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513, 532-541 (2009).
  12. Machold, R., Fishell, G. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron. 48, 17-24 (2005).
  13. Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F., Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 389, 251-260 (1997).
  14. Kouzarides, T. Chromatin modifications and their function. Cell. 128, 693-705 (2007).
  15. Zhang, Q., et al. Histone modification mapping in human brain reveals aberrant expression of histone H3 lysine 79 dimethylation in neural tube defects. Neurobiol. Dis. 54, 404-413 (2013).
  16. Zhang, Y., Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15, 2343-2360 (2001).
  17. Sanders, S. L., et al. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell. 119, 603-614 (2004).
  18. Martin, C., Zhang, Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 6, 838-849 (2005).
  19. Greer, E. L., Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343-357 (2012).
  20. Ng, H. H., et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev. 16, 1518-1527 (2002).
  21. Kebede, A. F., Schneider, R., Daujat, S. Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest. FEBS J. 282, 1658-1674 (2015).
  22. Roidl, D., Hacker, C. Histone methylation during neural development. Cell Tissue Res. 356, 539-552 (2014).
  23. Mersfelder, E. L., Parthun, M. R. The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res. 34, 2653-2662 (2006).
  24. van Leeuwen, F., Gafken, P. R., Gottschling, D. E. Dot1p Modulates Silencing in Yeast by Methylation of the Nucleosome Core. Cell. 109, 745-756 (2002).
  25. Jones, B., et al. The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet. 4, e1000190 (2008).
  26. Woo Park, J., et al. RE-IIBP Methylates H3K79 and Induces MEIS1-mediated Apoptosis via H2BK120 Ubiquitination by RNF20. Sci. Rep. 5, 12485 (2015).
  27. Vlaming, H., van Leeuwen, F. The upstreams and downstreams of H3K79 methylation by DOT1L. Chromosoma. , (2016).
  28. Jones, B., et al. The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet. 4, e1000190 (2008).
  29. Feng, Y., et al. Early mammalian erythropoiesis requires the Dot1L methyltransferase. Blood. 116, 4483-4491 (2010).
  30. Cattaneo, P., et al. DOT1L-mediated H3K79me2 modification critically regulates gene expression during cardiomyocyte differentiation. Cell Death Differ. 23, 555-564 (2016).
  31. Zhang, Q., et al. Histone modification mapping in human brain reveals aberrant expression of histone H3 lysine 79 dimethylation in neural tube defects. Neurobiol. Dis. 54, 404-413 (2013).
  32. Büttner, N., Johnsen, S. A., Kügler, S., Vogel, T. Af9/Mllt3 interferes with Tbr1 expression through epigenetic modification of histone H3K79 during development of the cerebral cortex. Proc. Natl. Acad. Sci. U. S. A. 107, 7042-7047 (2010).
  33. Roidl, D., et al. DOT1L Activity Promotes Proliferation and Protects Cortical Neural Stem Cells from Activation of ATF4-DDIT3-Mediated ER Stress In Vitro. Stem Cells Dayt. Ohio. 34, 233-245 (2016).
  34. Robinson, J. T., et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24-26 (2011).
  35. Langmead, B., Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 9, 357-359 (2012).
  36. Zhang, Y., et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
  37. Ramírez, F., et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160-W165 (2016).
  38. Roidl, D. . Histone modifications during cerebral cortex development. , (2015).
  39. Turner, B. ChIP with Native Chromatin: Advantages and Problems Relative to Methods Using Cross-Linked Material. Mapping Protein/DNA Interactions by Cross-Linking. , (2001).
  40. Dincman, T. A., Beare, J. E., Ohri, S. S., Whittemore, S. R. Isolation of cortical mouse oligodendrocyte precursor cells. J. Neurosci. Methods. 209, 219-226 (2012).
check_url/fr/56631?article_type=t

Play Video

Citer Cet Article
Bovio, P., Roidl, D., Heidrich, S., Vogel, T., Franz, H. Isolation and Cultivation of Neural Progenitors Followed by Chromatin-Immunoprecipitation of Histone 3 Lysine 79 Dimethylation Mark. J. Vis. Exp. (131), e56631, doi:10.3791/56631 (2018).

View Video