Summary

小鼠自身免疫性糖尿病过继转移模型中移植物存活的生物发光监测

Published: November 18, 2022
doi:

Summary

该协议描述了一种直接和微创的方法,用于在非肥胖糖尿病(NOD)严重联合免疫缺陷小鼠中移植和成像NIT-1细胞,这些小鼠受到从自发糖尿病NOD小鼠纯化的脾细胞的挑战。

Abstract

1型糖尿病的特征是胰腺产生胰岛素的β细胞的自身免疫性破坏。这种疾病的有希望的治疗方法是移植干细胞衍生的β细胞。然而,为了保护移植的细胞免受持续的自身免疫,可能需要进行基因改造。糖尿病小鼠模型是初步评估保护移植细胞免受自身免疫攻击的策略的有用工具。这里描述的是一种在小鼠糖尿病过继转移模型中移植和成像细胞移植物的微创方法。在该协议中,来自表达萤火虫荧光素酶转基因 luc2 的鼠胰腺β细胞系NIT-1的细胞被皮下移植到免疫缺陷的非肥胖糖尿病(NOD)严重联合免疫缺陷(scid)小鼠中。同时向这些小鼠静脉注射来自自发糖尿病NOD小鼠的脾细胞以转移自身免疫。通过非侵入性生物发光成像 定期 对移植物进行成像,以监测细胞存活。将突变细胞的存活率与移植到同一只小鼠中的对照细胞的存活率进行比较。

Introduction

1型糖尿病(T1D)是由胰腺产生胰岛素的β细胞的自身免疫性破坏引起的。β细胞质量的损失导致胰岛素缺乏和高血糖。T1D 患者每天依赖多次注射外源性胰岛素,并终生经历严重高血糖和低血糖发作。与这些发作相关的并发症包括糖尿病视网膜病变、肾功能下降和神经病变1

胰岛素注射是T1D的治疗方法,但不能治愈。然而,替换丢失的β细胞团有可能通过使患者产生自己的胰岛素来逆转疾病。然而,尸体供体胰岛的供应有限2。干细胞来源的胰岛(SC-胰岛)可以为移植提供几乎无限的β细胞供应。几个小组已经证明,人类胚胎干细胞(ESC)和诱导多能干细胞(iPSCs)可以分化以产生功能性β样细胞345。有希望的早期临床试验数据表明,这些细胞在移植后仍能维持其功能,并可能使患者成为胰岛素非依赖性6。然而,需要慢性免疫抑制,从而增加他们对癌症和感染的易感性。此外,免疫抑制剂长期可能对移植物具有细胞毒性7。为了消除免疫抑制的需要,可以对SC胰岛进行基因改造,以保护它们免受复发性自身免疫以及移植后的同种异体免疫。

干细胞研究对成本和劳动力的要求很高。小鼠细胞系和动物模型是用于初始鉴定和实验验证保护移植细胞免受自身免疫的策略的有用工具。NOD小鼠发展为自发性自身免疫性糖尿病,与人类T1D8有许多相似之处,NIT-1胰岛素瘤细胞系与该小鼠品系9共享遗传背景。糖尿病可以通过从NOD小鼠注射糖尿病脾细胞过继转移到相关的免疫缺陷NOD-scid小鼠品系,以便在复制实验小鼠10中暂时同步糖尿病的发作。该模型可用于相对快速且廉价地识别遗传靶标,以便在SC胰岛中进行进一步验证。最近,该方法被用于鉴定和验证RNLS,RNLS是一种靶标,被发现可以保护原代人胰岛免受体内自身免疫和iPSC衍生胰岛免受体外β细胞应激的影响11。这里描述的是移植基因工程NIT-1细胞并在小鼠自身免疫性糖尿病的过继转移模型中非侵入性监测其存活率的简单方案。

Protocol

图 1:小鼠糖尿病过继转移模型中移植和成像移植物的工作流程。 表达萤火虫转基因荧光素酶(luc2)的NIT-1细胞皮下移植到NOD-scid小鼠中。同时向小鼠注射从自发糖尿病NOD小鼠分离的自身反应性脾细胞。通过非侵入性生物发光成像定期对移植物进行成像。BioRend…

Representative Results

图 1 概述了该协议的概述。可以比较两个细胞系的存活率,例如突变体和非靶向对照,或者可以在多组小鼠中测量一个细胞系的存活率,例如药物治疗的小鼠与载体处理的对照。图3A显示了三只8周龄的雌性NOD-scid小鼠移植非靶向对照(左)和突变(右)细胞系。小鼠还静脉注射自身反应性脾细胞以转移糖尿病。 小鼠在注射后第0天?…

Discussion

T1D是一种毁灭性的疾病,目前尚无治愈方法。β细胞替代疗法为患有这种疾病的患者提供了一种有希望的治疗方法,但这种策略的关键障碍是针对移植的β细胞的复发性自身免疫攻击的可能性。SC-β细胞的基因工程以降低其免疫可见性或易感性是这个问题的一个潜在解决方案。这里描述的是用于对移植的β细胞进行非侵入性成像的方案,以测量它们在小鼠自身免疫性糖尿病的过继转移模型中的存活?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢Erica P. Cai博士和Yuki Ishikawa博士开发本协议中描述的方法(见参考文献11)。S.K.和P.Y.实验室的研究得到了美国国立卫生研究院(NIH)(R01DK120445,P30DK036836),JDRF,哈佛干细胞研究所和Beatson基金会的资助。T.S.得到了国家糖尿病,消化和肾脏疾病研究所(NIDDK)(T32 DK007260-45)的博士后奖学金的支持,K.B.得到了Mary K. Iacocca基金会的部分奖学金支持。

Materials

0.05% Trypsin, 0.53 mM EDTA Corning 25-052-CI
293FT Invitrogen R70007 Fast-growing, highly transfectable clonal isolate derived from human embryonal kidney cells transformed with the SV40 large T antigen
ACK Lysing Buffer Gibco A10492-01
Alcohol prep pads, 70% Isopropyl alcohol Amazon/Ever Ready First Aid B08NWF31DX
BD 5ml Syringe Luer-Lok Tip BD 309646
BD PrecisionGlide Needle 26G x 5/8 (0.45 mm x 16 mm) Sub-Q BD 305115
BD 1 mL TB Syringe Slip Tip BD 309659
Blasticidin S HCl Corning  30-100-RB
Cell strainer premium SureStrain, 70 µm, sterile Southern Labware C4070 Or use similar sterile strainer with 40-70um pore size
CellDrop automated cell counter Denovix CellDrop BF-PAYG Or use similar cell counter device
Corning 100 mL Penicillin-Streptomycin Solution, 100x Corning 30-002-CI
Disposable Aspirating Pipets, Polystyrene, Sterile, Capacity=2 mL VWR 414004-265 Or use similar aspirating pipette
D-Luciferin, Potassium Salt , Molecular Biology Grade, Powder, >99% Goldbio LUCK-100
DMEM, high glucose, pyruvate, no glutamine Gibco 10313039
Falcon BD tubes, 50 mL Fisher Scientific 14-959-49A
Fetal Bovine Serum Gibco 10437-028
Forceps premium for tissues, 1 x 2 teeth 5 in, German Steel Fisher Scientific 13-820-074
Glucose urine test strip California Pet Pharmacy u-tsg100 Or use similar test strip for glucose measurments in urine/blood
GlutaMAX–1 (100x) Gibco 35050-061
Infrared heating lamp Cole Parmer 03057-00 Or use similar infrared lamp 
Insulin syringe 0.5 mL, U-100 29 G 0.5 in Becton Dickinson 309306
Isoflurane, USP Piramal Critical Care 6679401725
IVIS Spectrum in vivo imaging system Perkin Elmer 124262 Instrument for non-invasively collecting bioluminescent images of transplanted cells
Living Image Analysis Software Perkin Elmer 128113 Software for collecting and quantifying bioluminescent signal
Microcentrifuge tubes seal-rite, 1.5 mL USA Scientific 1615-5510 Or use similar sterile microcentrifuge tubes
NIT-1 ATCC CRL-2055 Pancreatic beta-celll line derived from NOD/Lt mice
NOD.Cg-Prkdcscid/J The Jackson Laboratory 001303 Mice homozygous for the severe combined immune deficiency spontaneous mutation Prkdcscid, commonly referred to as scid, are characterized by an absence of functional T cells and B cells, lymphopenia, hypogammaglobulinemia, and a normal hematopoietic microenvironment.
NOD/ShiLtJ The Jackson Laboratory 001976 The NOD/ShiLtJ strain of mice (commonly called NOD) is a polygenic model for autoimmune type 1 diabetes
PBS, pH 7.4 Thermo Fisher Scientific 10010031 No calcium, no magnesium, no phenol red
pCMV-VSV-G Addgene 8454
pLenti-luciferase-blast Made in-house Plasmid available upon request See Supplemental File 1
pMD2.G Addgene 12259
pMDLg/pRRE Addgene 12251
Polyethylenimine, Linear, MW 25,000, Transfection Grade (PEI 25K) Fisher Scientific NC1014320
pRSV-Rev Addgene 12253
Restrainer for rodents, broome-style round 1 in Fisher Scientific 01-288-32A
Scissors, sharp-pointed Fisher Scientific 08-940 Or use other scissors made of surgical-grade stainless steel
Tissue-culture treated culture dishes Millipore Sigma CLS430167-20EA Or use other sterile cell culture-treated Petri dishes
Tweezers/Forceps, fine precision medium tipped Fisher Scientific 12-000-157

References

  1. Katsarou, A., et al. Type 1 diabetes mellitus. Nature Reviews Disease Primers. 3, 17016 (2017).
  2. Shapiro, A. M., Pokrywczynska, M., Ricordi, C. Clinical pancreatic islet transplantation. Nature Reviews Endocrinology. 13 (5), 268-277 (2017).
  3. Pagliuca, F. W., et al. Generation of functional human pancreatic beta cells in vitro. Cell. 159 (2), 428-439 (2014).
  4. Russ, H. A., et al. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO Journal. 34 (13), 1759-1772 (2015).
  5. Rezania, A., et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nature Biotechnology. 32 (11), 1121-1133 (2014).
  6. Vertex Announces Positive Day 90 Data for the First Patient in the Phase 1_2 Clinical Trial Dosed With VX-880, a Novel Investigational Stem Cell-Derived Therapy for the Treatment of Type 1 Diabetes. Businesswire Available from: https://www.businesswire.com/news/home/20211018005226/en/Vertex-Announces-Positive-Day-90-Data-for-the-First-Patient-in-the-Phase-12-Clinical-Trial-Dosed-With-VX-880-a-Novel-Investigational-Stem-Cell-Derived-Therapy-for-the-Treatment-of-Type-1-Diabetes (2021)
  7. Gamble, A., Pepper, A. R., Bruni, A., Shapiro, A. M. J. The journey of islet cell transplantation and future development. Islets. 10 (2), 80-94 (2018).
  8. Pearson, J. A., Wong, F. S., Wen, L. The importance of the Non Obese Diabetic (NOD) mouse model in autoimmune diabetes. Journal of Autoimmunity. 66, 76-88 (2016).
  9. Hamaguchi, K., Gaskins, R. H., Leiter, E. H. NIT-1, a pancreatic β-cell line established from a transgenic NOD/Lt mouse. Diabetes. 40 (7), 842-849 (1991).
  10. Christianson, S. W., Shultz, L. D., Leiter, E. D. Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice: Relative contribution of CD4+ and CD8+ T-cells from diabetogenic versus prediabetic NOD.NON-Thy1a donors. Diabetes. 42 (1), 44-55 (1993).
  11. Cai, E. P., et al. Genome-scale in vivo CRISPR screen identifies RNLS as a target for beta cell protection in type 1 diabetes. Nature Metabolism. 2 (9), 934-945 (2020).
  12. Parent, A. V., et al. Selective deletion of human leukocyte antigens protects stem cell-derived islets from immune rejection. Cell Reports. 36 (7), 109538 (2021).
  13. Brehm, M. A., et al. Lack of acute xenogeneic graft-versus-host disease, but retention of T-cell function following engraftment of human peripheral blood mononuclear cells in NSG mice deficient in MHC class I and II expression. FASEB Journal. 33 (3), 3137-3151 (2019).
  14. Abdulreda, M. H., et al. In vivo imaging of type 1 diabetes immunopathology using eye-transplanted islets in NOD mice. Diabetologia. 62 (7), 1237-1250 (2019).
check_url/fr/64836?article_type=t

Play Video

Citer Cet Article
Stewart, T., Bode, K., Kissler, S., Yi, P. Bioluminescent Monitoring of Graft Survival in an Adoptive Transfer Model of Autoimmune Diabetes in Mice. J. Vis. Exp. (189), e64836, doi:10.3791/64836 (2022).

View Video