Summary

噬菌体纤维化 斑马鱼胚 胎中伪多多多阿韦诺萨感染的噬菌体治疗应用

Published: May 12, 2020
doi:

Summary

这里介绍的是伪 多多多酸菌感染和 噬菌体治疗应用囊性纤维化(CF)斑马鱼胚胎的协议。

Abstract

抗微生物药物耐药性是诊断不确定性和抗菌药物过度处方的一个主要后果,是全世界日益公认的严重感染、并发症和死亡的原因,它在我们的社会和卫生系统上产生了巨大影响。特别是,免疫系统受损或预先存在的慢性疾病(如囊性纤维化 (CF))的患者经常接受抗生素治疗,以控制多药耐药分离物的出现和传播感染。因此,迫切需要解决替代疗法,以抵消细菌感染。使用细菌的天敌噬菌体可能是一种可能的解决方案。本文详述的规程描述了噬菌体疗法在CF斑马鱼胚胎中对伪多多尼亚亚亚罗吉诺萨感染的应用。斑马鱼胚胎感染了 P.aeruginosa, 以证明噬菌体疗法对 P.aeruginosa 感染是有效的,因为它减少了CF胚胎中的致命性、细菌负担和亲炎免疫反应。

Introduction

噬菌体疗法,利用细菌的天敌来对抗细菌感染,随着细菌对抗生素的耐药性变得广泛而引起,人们重新的兴趣。这种疗法在东欧使用了几十年,可被视为对治疗CF患者肺部感染的抗生素的补充疗法,以及一种可能的治疗方法,用于治疗目前使用的所有抗生素22、33的细菌。抗生素治疗的优点是噬菌体在感染部位繁殖,而抗生素被代谢,从体内消除4,5。,5事实上,不同实验室分离的毒性噬菌体鸡尾酒的产生已证明对治疗动物模型中的伪多莫纳斯亚吉诺萨感染是有效的,就像,昆虫和哺乳动物6、7、87一样6在随机临床试验9中,噬菌体疗法还证明能够减轻感染了P.aeruginosa和Escherichia大肠杆菌的烧伤伤口的细菌负担

斑马鱼(Danio rerio)最近已成为研究几种病原体感染的宝贵模型,包括P.aeruginosa10,11,10,11分枝杆肿和布尔科达雷塞西亚12,13。12,13通过微缩细菌直接进入胚胎血液循环14,很容易建立一种系统感染,由斑马鱼先天免疫系统抵消,这是进化保存与嗜中性粒细胞和巨噬细胞生成类似人类对应。此外,在生命的第一个月,斑马鱼胚胎缺乏适应性免疫反应,是研究先天免疫的理想模型,是人类肺部感染的关键防御机制。斑马鱼最近成为一个强大的基因模型系统,以更好地了解CF发病,并开发新的药理治疗10,16,17。10,16,17在斑马鱼中用形态注射产生的cftr击倒的CFR斑马鱼模型呈现抑制性呼吸突发反应和减少嗜中性粒细胞迁移10,而cftr击倒导致内部器官位置受损和破坏外分泌胰腺,一种反映人类疾病16,17,表型。最感兴趣的是发现,在cftr-功能丧失胚胎中,P.aeruginosa细菌负担明显高于感染后8小时对等对子,这与小鼠和人类支气管上皮细胞2、18,18的结果平行。

在这项工作中,我们证明噬菌体疗法 对斑马鱼胚胎中的P.aeruginosa 感染是有效的。

Protocol

来自AB菌株(欧洲斑马鱼资源中心EZRC)的成年斑马鱼(Danio rerio)根据国际(欧盟指令2010/63/EU)和国家指南(意大利2014年3月4th日法令,第26号法令)维护,保护用于科学目的的动物。标准条件设置在鱼设施与14小时光/10小时暗循环和水箱水温在28°C。 1. 准备解决方案和工具 为生长斑马鱼胚胎的 E3 胚胎介质准备 50 倍的库存溶液和 1 倍的工作解决方案( <s…

Representative Results

此处显示的结果和数字是指通过注射cftr 形态异形体生成的 CF 胚胎,如前面10 和步骤 5 所述。为了验证CF表型,考虑了心脏、肝脏和胰腺等内脏器官的受损位置,如前面描述的17(图1)。在WT胚胎的情况下,也取得了类似的结果,正如我们在上一份出版物19中报道的。 感染PAO1的CF胚胎的噬菌体?…

Discussion

在这份手稿中,我们描述了在斑马鱼胚胎中实施 P.aeruginosa(PAO1) 感染的协议,以及如何使用以前被确定为能够感染PAO1的噬菌体鸡尾酒来应用噬菌体疗法来解决它。使用噬菌体作为抗生素治疗的替代品,自去年年底以来,人们越来越关注。这主要是由于耐多药(MDR)细菌感染的传播,这对公共卫生构成严重问题。当然,这项工作的范围仅限于将噬菌病疗法应用到动物模型,而不是人类。然…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了意大利囊性纤维化基金会(FFC#22/2017) 的支持;协会”Gli amici della Ritty”卡斯尼戈和FFC#23/2019;皮奥卢斯拉马诺特萨奥卢斯的 Un respiro) 。

Materials

Bacto Agar BD 214010
Calcium chloride Sigma-Aldrich 10043-52-4
CsCl Sigma-Aldrich 289329
Dulbecco's phospate buffered saline PBS Sigma-Aldrich D8537
Ethyl 3-aminobenzoate methanesulfonate Sigma-Aldrich 886-86-2 common name tricaine
Femtojet Micromanipulator Eppendorf 5247
Fleming/brown P-97 Sutter Instrument Company P-97
LE-Agarose Sigma-Aldrich 11685660001
Low Melting Agarose Sigma-Aldrich CAS 9012-36-6
Magnesium sulfate Sigma-Aldrich 7487-88-9
Methyl Blue Sigma-Aldrich 28983-56-4
Microinjection needles Harvard apparatus
N-Phenylthiourea >=98% Aldrich-P7629 103-85-5
Oligo Morpholino Gene Tools designed by the researcher
PEG6000 Calbiochem 528877
Phenol Red Solution Sigma-Aldrich CAS 143-74-B
Potassium chloride Sigma-Aldrich 7447-40-7
Pronase Sigma-Aldrich 9036-06-0
Sodium chloride ACS reagent, ≥99.0% Sigma-Aldrich S9888
Stereomicroscope Leica S9I
Tris HCl Sigma-Aldrich T5941
Triton X Sigma-Aldrich T9284
Tryptone Oxoid LP0042B
Yeast extract Oxoid LP0021B
Z-MOLDS Microinjection Word Precision Instruments

Riferimenti

  1. Cisek, A. A., Dąbrowska, I., Gregorczyk, K. P., Wyżewski, Z. Phage Therapy in Bacterial Infections Treatment: One Hundred Years After the Discovery of Bacteriophages. Current Microbiology. 74 (2), 277-283 (2017).
  2. Trend, S., Fonceca, A. M., Ditcham, W. G., Kicic, A., Cf, A. The potential of phage therapy in cystic fibrosis: Essential human-bacterial-phage interactions and delivery considerations for use in Pseudomonas aeruginosa-infected airways. Journal of Cystic Fibrosis. 16 (6), 663-667 (2017).
  3. Pacios, O., et al. Strategies to combat multidrug-resistant and persistent infectious diseases. Antibiotics. 9 (2), 65 (2020).
  4. Dubos, R. J., Straus, J. H., Pierce, C. The multiplication of bacteriophage in vivo and its protective effect against an experimental infection with shigella dysenteriae. Journal of Experimental Medicine. 78 (3), 161-168 (1943).
  5. Marza, J. A. S., Soothill, J. S., Boydell, P., Collyns, T. A. Multiplication of therapeutically administered bacteriophages in Pseudomonas aeruginosa infected patients. Burns. 32 (5), 644-656 (2006).
  6. Heo, Y. J., et al. Antibacterial efficacy of phages against Pseudomonas aeruginosa infections in mice and Drosophila melanogaster. Antimicrobial Agents and Chemotherapy. , 01646 (2009).
  7. McVay, C. S., Velásquez, M., Fralick, J. A. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrobial Agents and Chemotherapy. , 01028 (2007).
  8. Forti, F., et al. Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrobial Agents and Chemotherapy. , 02573 (2018).
  9. Jault, P., et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infectious Diseases. 19 (1), 35-45 (2019).
  10. Phennicie, R. T., Sullivan, M. J., Singer, J. T., Yoder, J. A., Kim, C. H. Specific resistance to Pseudomonas aeruginosa infection in zebrafish is mediated by the cystic fibrosis transmembrane conductance regulator. Infections and Immunity. 78, 4542-4550 (2010).
  11. Clatworthy, A. E., et al. Pseudomonas aeruginosa infection of zebrafish involves both host and pathogen determinants. Infections and Immunity. 77, 1293-1303 (2009).
  12. Bernut, A., et al. CFTR Protects against Mycobacterium abscessus Infection by Fine-Tuning Host Oxidative Defenses. Cell Reports. 26 (7), 1828-1840 (2019).
  13. Semler, D. D., Goudie, A. D., Finlay, W. H., Dennis, J. J. Aerosol phage therapy efficacy in Burkholderia cepacia complex respiratory infections. Antimicrobial Agents and Chemotherapy. , 02388 (2014).
  14. Benard, E. L., et al. Infection of zebrafish embryos with intracellular bacterial pathogens. Journal of Visualized Experiments. (61), e3781 (2012).
  15. Doring, G., Gulbins, E. Cystic fibrosis and innate immunity: how chloride channel mutations provoke lung disease. Cellular Microbiology. 11, 208-216 (2009).
  16. Navis, A., Bagnat, M. Loss of cftr function leads to pancreatic destruction in larval zebrafish. Biologia dello sviluppo. 399, 237-248 (2015).
  17. Navis, A., Marjoram, L., Bagnat, M. Cftr controls lumen expansion and function of Kupffer’s vesicle in zebrafish. Development. 140, 1703-1712 (2013).
  18. Balloy, V., et al. Normal and cystic fibrosis human bronchial epithelial cells infected with Pseudomonas aeruginosa exhibit distinct gene activation patterns. PLoS One. 10, 0140979 (2015).
  19. Cafora, M., et al. Phage therapy against Pseudomonas aeruginosa infections in a cystic fibrosis zebrafish model. Science Reports. 9, 1527 (2019).
  20. Hershey, A. D., Kalmanson, G. M., Bronfenbrenner, J. Quantitative methods in the study of the phage-antiphage reaction. Journal of Immunology. 46, 267-279 (1943).
  21. Kimmel, C., Ballard, W., Kimmel, S., Ullmann, B., Schilling, T. Stages of embryonic development of the zebrafish. Developmental Dynamics. 203, 253-310 (1995).
  22. Rosen, J. N., Sweeney, M. F., Mably, J. D. Microinjection of zebrafish embryos to analyze gene function. Journal of Visualized Experiments. (25), e1115 (2009).
  23. Traver, D., et al. The Zebrafish as a Model Organism to Study Development of the Immune System. Advances in Immunology. 81, 253-330 (2003).
check_url/it/61275?article_type=t

Play Video

Citazione di questo articolo
Cafora, M., Forti, F., Briani, F., Ghisotti, D., Pistocchi, A. Phage Therapy Application to Counteract Pseudomonas aeruginosa Infection in Cystic Fibrosis Zebrafish Embryos. J. Vis. Exp. (159), e61275, doi:10.3791/61275 (2020).

View Video