Summary

研究角膜伤口愈合的上皮擦伤模型

Published: December 29, 2021
doi:

Summary

这里,描述了使用环锯和钝高尔夫球杆螺杆在小鼠中形成中央角膜上皮擦伤伤口的方案。这种角膜伤口愈合模型具有高度可重复性,现在正用于评估疾病背景下受损的角膜伤口愈合。

Abstract

角膜对视力至关重要,约占眼睛屈光力的三分之二。角膜在视觉中的作用至关重要的是其透明度。然而,由于其外部位置,角膜极易受到各种损伤的影响,这些损伤可能导致角膜透明度丧失并最终失明。针对这些损伤,有效的角膜伤口愈合对于维持角膜稳态和保持角膜透明度和屈光能力至关重要。在角膜伤口愈合受损的情况下,角膜变得容易受到感染,溃疡和瘢痕形成。鉴于角膜伤口愈合对保持角膜透明度和视力的根本重要性,更好地了解正常的角膜伤口愈合过程是了解与感染和疾病相关的角膜伤口愈合受损的先决条件。为了实现这一目标,角膜损伤的小鼠模型已被证明有助于进一步了解在正常生理条件下运作的角膜伤口愈合机制。这里,描述了使用环锯和钝高尔夫球杆螺杆在小鼠中产生中央角膜上皮磨损的方案。在该模型中,一个直径为2毫米的圆形环锯,以角膜为中心,用于划定伤口区域。高尔夫球杆螺杆经过精心使用,以清创上皮并形成圆形伤口,而不会损坏角膜上皮基底膜。由此产生的炎症反应作为表征良好的细胞和分子事件的级联进行,这些事件对于有效的伤口愈合至关重要。这种简单的角膜伤口愈合模型具有高度可重复性和良好的出版性,现在正用于评估疾病背景下受损的角膜伤口愈合。

Introduction

角膜是眼睛前三分之一的透明角膜。角膜具有多种功能,包括保护眼睛的内部结构和形成保护眼睛免受感染的结构屏障1。更重要的是,角膜对视力至关重要,提供约三分之二的眼睛屈光力23。角膜在视觉中的作用至关重要的是其透明度。然而,由于其向外的位置,角膜每天都会暴露在各种各样的损伤中,这可能导致其屏障功能的破坏,透明度的丧失以及最终的失明。角膜透明度丧失是全球视力障碍的主要原因45.角膜擦伤是急诊室(ER)就诊的常见原因,占ER6上眼部相关病例的一半。据估计,美国每年有超过100万人遭受眼部相关伤害7.针对这些损伤,有效的角膜伤口愈合对于维持角膜稳态和保持其透明度和屈光能力至关重要。在角膜伤口愈合受损的情况下,角膜变得容易受到感染,溃疡和瘢痕形成89。此外,屈光手术的日益普及给角膜10带来了独特的创伤性挑战。鉴于角膜伤口愈合对保持角膜透明度和视力的根本重要性,更好地了解正常的角膜伤口愈合过程是了解与感染和疾病相关的角膜伤口愈合受损的先决条件。

为此,已经开发了几种角膜伤口愈合的动物模型1112131415。角膜伤口愈合的小鼠模型已被证明有助于进一步了解在正常生理条件下起作用的角膜伤口愈合机制。不同类型的角膜伤口已被用于研究角膜伤口愈合,每种伤口都适用于研究伤口愈合过程的不同方面。角膜伤口愈合研究中使用的最常见类型的伤口模型是机械和化学伤口模型。化学角膜伤口,主要涉及角膜上碱性烧伤的产生,可用于研究角膜溃疡,混浊和新生血管形成13。机械性角膜伤口涉及清创(擦伤)伤口和角膜切除术伤口141516。完整或破裂的角膜上皮基底膜分别定义了清创术和角膜切除术伤口。在清创伤口中,上皮基底膜保持完整,而在角膜切除术伤口中,基底膜被破坏,主要渗透到前基质中。清创伤口对于研究角膜损伤后的再上皮化、上皮细胞增殖、免疫反应和神经再生最有用。另一方面,角膜切除术伤口对于研究角膜瘢痕形成最有用1415

这里,描述了使用环锯和钝高尔夫球杆螺杆在小鼠中形成中央角膜上皮擦伤伤口的方案。这种简单的角膜伤口愈合模型具有高度可重复性和良好的出版性,现在正用于评估疾病17背景下受损的角膜伤口愈合。

Protocol

所有动物协议均由休斯顿大学和贝勒医学院的机构动物护理和使用委员会批准。在处理和使用小鼠时,遵循了视觉和眼科研究协会(ARVO)关于在视觉和眼科研究中使用动物的声明中概述的指南。 1. 准备工作 荧光素溶液的制备 通过将10mg荧光素钠盐溶解在1mL无菌盐水或无菌1x磷酸盐缓冲盐水(PBS)中来制备1%荧光素溶液。注意:在使用当天或前一天…

Representative Results

图3 显示了用钝性高尔夫球杆孢子形成的角膜伤口的透射电子显微镜照片,表明上皮基底膜在损伤后确实完好无损。 图3:角膜擦伤后上皮基底膜保持完整。 用钝性高尔夫球杆刺形成的角膜伤口的透射电子显微照片。箭头指向伤口?…

Discussion

该方法论文的目的是描述一种方案,用于使用环锯和钝高尔夫球杆在小鼠中形成中央角膜上皮擦伤伤口。该小鼠模型已被用于研究角膜炎症及其对伤口愈合的贡献。这种类型的模型可用于研究正常生理条件下角膜伤口愈合机制和病理学1728294142该模型已被用于研究?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

资助:NIH EY018239(A.R.B.,C.W.S.和R.E.R.),P30EY007551(A.R.B.)和Sigma Xi资助研究(P.K.A.)。内容完全由作者负责,不代表美国国立卫生研究院或Sigma Xi的官方观点。

Materials

Anti-CD31 antibody BD Bioscience, Pharmingen 550274
Anti-CD41 antibody BD Bioscience, Pharmingen 553847
Anti-Ly6G antibody BD Bioscience, Pharmingen 551459
Bovine serum albumin (BSA) ThermoFisher scientific B14
C57BL/6 mice Jackson Laboratories 664
DAPI Sigma Aldrich D8417
DeltaVision wide-field deconvolution fluorescence microscope GE Life Sciences
Dissecting microscope Leica microsystems
Electronic Toploading Balances (Weighing scale) Fisher Scientific
Ethanol ThermoFisher scientific T038181000CS
Golf-club spud Stephens instruments S2-1135
Iris curve scissors Fisher Scientific 31212
Isoflurane Patterson veterinary 07-893-1389
Ketamine Patterson veterinary 07-890-8598
Phospate buffered saline (PBS) ThermoFisher scientific AM9624
Sodium fluorescein salt Sigma Aldrich 46970
Surgical blade (scapel blade) Fine Science tools 10022-00
Trephine Integra Miltex 33-31
TritonX -100 Fisher Scientific 50-295-34
Forcep Fine Science tools 11923-13
Xylazine Patterson veterinary 07-808-1947

Riferimenti

  1. DelMonte, D. W., Kim, T. Anatomy and physiology of the cornea. Journal of Cataract and Refractive Surgery. 37 (3), 588-598 (2011).
  2. Meek, K. M., Knupp, C. Corneal structure and transparency. Progress in Retinal and Eye Research. 49, 1-16 (2015).
  3. Sridhar, M. S. Anatomy of cornea and ocular surface. Indian Journal of Ophthalmology. 66 (2), 190-194 (2018).
  4. Flaxman, S. R., et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. The Lancet Global Health. 5 (12), 1221-1234 (2017).
  5. Robaei, D., Watson, S. Corneal blindness: A global problem. Clinical & Experimental Ophthalmology. 42 (3), 213-214 (2014).
  6. McGwin, G., Owsley, C. Incidence of emergency department-treated eye injury in the United States. Archives of Ophthalmology. 123 (5), 662-666 (2005).
  7. Ljubimov, A. V., Saghizadeh, M. Progress in corneal wound healing. Progress in Retinal and Eye Research. 49, 17-45 (2015).
  8. Wilson, S. L., Haj, A. J. E., Yang, Y. Control of scar tissue formation in the cornea: Strategies in clinical and corneal tissue engineering. Journal of Functional Biomaterials. 3 (3), 642 (2012).
  9. Vaidyanathan, U., et al. Persistent corneal epithelial defects: A review article. Medical Hypothesis, Discovery and Innovation in Ophthalmology. 8 (3), 163-176 (2019).
  10. Netto, M., et al. Wound healing in the cornea: a review of refractive surgery complications and new prospects for therapy. Cornea. 24 (5), 509-522 (2005).
  11. Friedenwald, J. S., Buschke, W. Some factors concerned in the mitotic and wound-healing activities of the corneal epithelium. Transactions of the American Ophthalmological Society. 42, 371-383 (1944).
  12. Xu, K., Yu, F. -. S. X. Impaired epithelial wound healing and EGFR signaling pathways in the corneas of diabetic rats. Investigative Ophthalmology & Visual Science. 52 (6), 3301-3308 (2011).
  13. Bai, J. Q., Qin, H. F., Zhao, S. H. Research on mouse model of grade II corneal alkali burn. International Journal of Ophthalmology. 9 (4), 487-490 (2016).
  14. Blanco-Mezquita, J. T., Hutcheon, A. E. K., Stepp, M. A., Zieske, J. D. αVβ6 integrin promotes corneal wound healing. Investigative Ophthalmology and Visual Science. 52 (11), 8505-8513 (2011).
  15. Blanco-Mezquita, J. T., Hutcheon, A. E. K., Zieske, J. D. Role of thrombospondin-1 in repair of penetrating corneal wounds. Investigative Ophthalmology and Visual Science. 54 (9), 6262-6268 (2013).
  16. Stepp, M. A., et al. Wounding the cornea to learn how it heals. Experimental Eye Research. 121, 178-193 (2014).
  17. Hargrave, A., et al. Corneal dysfunction precedes the onset of hyperglycemia in a mouse model of diet-induced obesity. PLoS ONE. 15, 0238750 (2020).
  18. Machholz, E., Mulder, G., Ruiz, C., Corning, B. F., Pritchett-Corning, K. R. Manual restraint and common compound administration routes in mice and rats. Journal of Visualized Experiments: JoVE. (67), e2771 (2012).
  19. Bodner, L., Dayan, D. Effect of parotid submandibular and sublingual saliva on wound healing in rats. Comparative Biochemistry and Physiology. Part A, Physiology. 100 (4), 887-890 (1991).
  20. Abbasian, B., Azizi, S., Esmaeili, A. Effects of rat’s licking behavior on cutaneous wound healing. Iranian Journal of Basic Medical Sciences. 13 (1), 242-247 (2010).
  21. DeLisser, H. M., et al. Involvement of endothelial PECAM-1/CD31 in angiogenesis. The American Journal of Pathology. 151 (3), 671-677 (1997).
  22. Piali, L., et al. CD31/PECAM-1 is a ligand for alpha v beta 3 integrin involved in adhesion of leukocytes to endothelium. The Journal of Cell Biology. 130 (2), 451-460 (1995).
  23. Fleming, T. J., Fleming, M. L., Malek, T. R. Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. The Journal of Immunology. 151 (5), 2399-2408 (1993).
  24. Fleming, T. J., Malek, T. R. Multiple glycosylphosphatidylinositol-anchored Ly-6 molecules and transmembrane Ly-6E mediate inhibition of IL-2 production. The Journal of Immunology. 153 (5), 1955-1962 (1994).
  25. Phillips, D. R., Charo, I. F., Scarborough, R. M. GPIIb-IIIa: the responsive integrin. Cell. 65 (3), 359-362 (1991).
  26. Nieswandt, B., et al. Acute systemic reaction and lung alterations induced by an antiplatelet integrin gpIIb/IIIa antibody in mice. Blood. 94 (2), 684-693 (1999).
  27. Li, Z., Burns, A. R., Rumbaut, R. E., Smith, C. W. γδ T cells are necessary for platelet and neutrophil accumulation in limbal vessels and efficient epithelial repair after corneal abrasion. American Journal of Pathology. 171 (3), 838-845 (2007).
  28. Liu, Q., Smith, C. W., Zhang, W., Burns, A. R., Li, Z. NK cells modulate the inflammatory response to corneal epithelial abrasion and thereby support wound healing. American Journal of Pathology. 181 (2), 452-462 (2012).
  29. Gao, Y., et al. NK cells are necessary for recovery of corneal CD11c+ dendritic cells after epithelial abrasion injury. Journal of Leukocyte Biology. 94 (2), 343-351 (2013).
  30. Xiao, C., et al. Acute tobacco smoke exposure exacerbates the inflammatory response to corneal wounds in mice via the sympathetic nervous system. Communications Biology. 2, 33 (2019).
  31. Wang, H., et al. Epothilone B speeds corneal nerve regrowth and functional recovery through microtubule stabilization and increased nerve beading. Scientific Reports. 8 (1), 2647 (2018).
  32. Li, Z., Burns, A. R., Smith, C. W. Lymphocyte function-associated Antigen-1-dependent inhibition of corneal wound healing. Cell Injury. 169, 1590-1600 (2006).
  33. Wu, M., et al. The neuroregenerative effects of topical decorin on the injured mouse cornea. Journal of Neuroinflammation. 17 (1), 1-14 (2020).
  34. Rodrigues, M., Kosaric, N., Bonham, C. A., Gurtner, G. C. Wound healing: A cellular perspective. Physiological Reviews. 99 (1), 665-706 (2019).
  35. Rennard, S. I. Inflammation and repair processes in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine. 160 (5), 12-16 (1999).
  36. Landén, N. X., Li, D., Ståhle, M. Transition from inflammation to proliferation: a critical step during wound healing. Cellular and Molecular Life Sciences. 73 (20), 3861-3885 (2016).
  37. Li, Z., Rumbaut, R. E., Burns, A. R., Smith, C. W. Platelet response to corneal abrasion is necessary for acute inflammation and efficient re-epithelialteation. Investigative Ophthalmology and Visual Science. 47, 4794-4802 (2006).
  38. Lam, F. W., Burns, A. R., Smith, C. W., Rumbaut, R. E. Platelets enhance neutrophil transendothelial migration via P-selectin glycoprotein ligand-1. American Journal of Physiology – Heart and Circulatory Physiology. 300 (2), 468-475 (2011).
  39. La Cruz, A. D., et al. Platelet and erythrocyte extravasation across inflamed corneal venules depend on CD18, neutrophils, and mast cell degranulation. International Journal of Molecular Sciences. 22 (14), 7360 (2021).
  40. Li, Z., Burns, A. R., Smith, C. W. Two waves of neutrophil emigration in response to corneal epithelial abrasion: Distinct adhesion molecule requirements. Investigative Ophthalmology and Visual Science. 47 (5), 1947-1955 (2006).
  41. Li, Z., Burns, A. R., Han, L., Rumbaut, R. E., Smith, C. W. IL-17 and VEGF Are Necessary for Efficient Corneal Nerve Regeneration. The American Journal of Pathology. 178 (3), 1106-1116 (2011).
  42. Xue, Y., et al. Modulation of circadian rhythms affects corneal epithelium renewal and repair in mice. Investigative Ophthalmology and Visual Science. 58 (3), 1865-1874 (2017).
  43. Zhang, W., Magadi, S., Li, Z., Smith, C. W., Burns, A. R. IL-20 promotes epithelial healing of the injured mouse cornea. Experimental Eye Research. 154, 22-29 (2017).
  44. Li, Z., Burns, A. R., Miller, S. B., Smith, C. W. CCL20, γδ T cells, and IL-22 in corneal epithelial healing. FASEB Journal. 25 (8), 2659-2668 (2011).
  45. Li, Z., Burns, A. R., Han, L., Rumbaut, R. E., Smith, C. W. IL-17 and VEGF are necessary for efficient corneal nerve regeneration. American Journal of Pathology. 178 (3), 1106-1116 (2011).
  46. Reins, R. Y., Hanlon, S. D., Magadi, S., McDermott, A. M. Effects of topically applied Vitamin D during corneal wound healing. PLoS ONE. 11 (4), 0152889 (2016).
  47. Gagen, D., et al. ICAM-1 mediates surface contact between neutrophils and keratocytes following corneal epithelial abrasion in the mouse. Experimental Eye Research. 91 (5), 676-684 (2010).
  48. Li, Z., Rivera, C. A., Burns, A. R., Smith, C. W. Hindlimb unloading depresses corneal epithelial wound healing in mice. Journal of Applied Physiology. 97 (2), 641-647 (2004).
  49. Byeseda, S. E., et al. ICAM-1 is necessary for epithelial recruitment of γδ T cells and efficient corneal wound healing. American Journal of Pathology. 175 (2), 571-579 (2009).
  50. Li, Z., Burns, A. R., Rumbaut, R. E., Smith, C. W. γδ T cells are necessary for platelet and neutrophil accumulation in limbal vessels and efficient epithelial repair after corneal abrasion. American Journal of Pathology. 171 (3), 838-845 (2007).
  51. Petrescu, M. S., et al. Neutrophil interactions with keratocytes during corneal epithelial wound healing: A role for CD18 integrins. Investigative Ophthalmology and Visual Science. 48 (11), 5023-5029 (2007).
  52. Pal-Ghosh, S., Pajoohesh-Ganji, A., Tadvalkar, G., Stepp, M. A. Removal of the basement membrane enhances corneal wound healing. Experimental Eye Research. 93 (6), 927-936 (2011).
  53. Pal-Ghosh, S., et al. Cytokine deposition alters leukocyte morphology and initial recruitment of monocytes and γδT cells after corneal injury. Investigative Ophthalmology & Visual Science. 55 (4), 2757-2765 (2014).
  54. Pal-Ghosh, S., Tadvalkar, G., Jurjus, R. A., Zieske, J. D., Stepp, M. A. BALB/c and C57BL6 mouse strains vary in their ability to heal corneal epithelial debridement wounds. Experimental Eye Research. 87 (5), 478-486 (2008).
  55. Kato, T., Chang, J. H., Azar, D. T. Expression of type XVIII collagen during healing of corneal incisions and keratectomy wounds. Investigative Ophthalmology and Visual Science. 44 (1), 78-85 (2003).
  56. Kure, T., et al. Corneal neovascularization after excimer keratectomy wounds in matrilysin-deficient mice. Investigative Ophthalmology and Visual Science. 44 (1), 137-144 (2003).
  57. Lin, A., et al. Bacterial keratitis preferred practice pattern. Ophthalmology. 126 (1), 1-55 (2019).
  58. Cable, E. J., Onishi, K. G., Prendergast, B. J. Circadian rhythms accelerate wound healing in female Siberian hamsters. Physiology and Behavior. 171, 165-174 (2017).
  59. Lyons, A. B., Moy, L., Moy, R., Tung, R. Circadian rhythm and the skin: A review of the literature. Journal of Clinical and Aesthetic Dermatology. 12 (9), 42-45 (2019).
  60. Westman, J., Grinstein, S., Marques, P. E. Phagocytosis of Necrotic Debris at Sites of Injury and Inflammation. Frontiers in Immunology. 10, 3030 (2020).
  61. Gaudry, M., et al. Intracellular pool of vascular endothelial growth factor in human neutrophils. Blood. 90 (10), 4153-4161 (1997).
  62. Pan, Z., et al. Vascular endothelial growth factor promotes anatomical and functional recovery of injured peripheral nerves in the avascular cornea. FASEB Journal. 7, 2756-2767 (2013).
  63. Di, G., et al. VEGF-B promotes recovery of corneal innervations and trophic functions in diabetic mice. Scientific Reports. 7 (1), 1-13 (2017).
  64. Thomas, M. R., Storey, R. F. The role of platelets in inflammation. Thrombosis and Haemostasis. 114 (3), 449-458 (2015).
  65. Margraf, A., Zarbock, A. Platelets in inflammation and resolution. The Journal of Immunology. 203 (9), 2357-2367 (2019).
check_url/it/63112?article_type=t

Play Video

Citazione di questo articolo
Akowuah, P. K., De La Cruz, A., Smith, C. W., Rumbaut, R. E., Burns, A. R. An Epithelial Abrasion Model for Studying Corneal Wound Healing. J. Vis. Exp. (178), e63112, doi:10.3791/63112 (2021).

View Video