Summary

一种从人间充质干细胞中分离小细胞外囊泡的简单台式过滤方法

Published: June 23, 2022
doi:

Summary

该协议演示了如何使用简单的实验室规模台式设置分离人脐带衍生间充质干细胞的小细胞外囊泡(hUC-MSC-sEVs)。采用纳米颗粒示踪分析、BCA蛋白测定、蛋白质印迹和透射电子显微镜分别对分离的hUC-MSC-sEV的粒径分布、蛋白浓度、sEVs标志物和形貌进行了表征。

Abstract

基于超速离心的过程被认为是小细胞外囊泡(sEV)分离的常用方法。然而,这种分离方法的产量相对较低,并且这些方法在分离sEV亚型方面效率低下。本研究展示了一种简单的台式过滤方法,用于分离人脐带衍生的MSC小细胞外囊泡(hUC-MSC-sEVs),通过超滤成功地从hUC-MSC的条件培养基中分离出来。采用纳米颗粒示踪分析、BCA蛋白测定、蛋白质印迹和透射电镜分别对分离的hUC-MSC-sEVs的尺寸分布、蛋白浓度、外泌体标志物(CD9、CD81、TSG101)和形貌进行了表征。分离出的hUC-MSC-sEVs的尺寸为30-200 nm,颗粒浓度为7.75 ×10 10 颗粒/mL,蛋白质浓度为80 μg/mL。观察到外泌体标志物CD9,CD81和TSG101的阳性条带。本研究表明,hUC-MSC-sEVs已成功从hUC-MSCs条件培养基中分离出来,表征表明分离出的产物符合2018年细胞外囊泡研究最小信息(MISEV 2018)提到的标准。

Introduction

根据MISEV 2018,sEV是非复制的脂质双层颗粒,不存在功能核,尺寸为30-200 nm1。MSC 衍生的 sEV 含有重要的信号分子,在组织再生中起重要作用,例如 microRNA、细胞因子或蛋白质。它们日益成为再生医学和无细胞疗法的研究“热点”。许多研究表明,间充质干细胞衍生的sEV在治疗不同疾病方面与间充质干细胞一样有效,例如免疫调节2345,增强成骨6,糖尿病7,8或血管再生910随着早期试验的进展,与MSCs-EVs的临床转化相关的三个主要关键问题得到了强调:EVs的产量,EVs的纯度(不含细胞碎片和其他生物污染物,如蛋白质和细胞因子),以及分离后EV磷脂双层膜的完整性。

已经开发了各种方法来分离sEV,利用sEV的密度,形状,大小和表面蛋白11。sEV分离中最常见的两种方法是基于超速离心和基于超滤的技术。

基于超速离心的方法被认为是sEV分离的金标准方法。通常采用的两种类型的超速离心技术是差分超速离心和密度梯度超速离心。然而,超速离心方法通常会导致低产量,并且需要昂贵的高速超速离心设备(100,000-200,000 × g11。此外,单独的超速离心技术在分离EV亚型(sEV和大型EV)方面效率低下,导致沉积层不纯11。最后,密度梯度超速离心也可能非常耗时,并且需要额外的预防措施,例如添加蔗糖缓冲液以抑制加速和减速步骤12期间的梯度损伤。因此,超速离心通常会导致相对较低的产率,并且无法区分不同EV群体13,这限制了其在大规模EV制备中的应用11

EV隔离的第二种方法是通过超滤,它基于尺寸过滤。与超速离心相比,超滤相对省时且具有成本效益,因为它不涉及昂贵的设备或较长的处理时间14。因此,超滤似乎是一种比上述两种超速离心方法更有效的分离技术。分离的产品可以根据孔径和更高的产量更具体15。然而,在过滤过程中产生的额外力可能导致EV变形或喷发16

本文提出了一种经济高效的台式方案,用于分离MSC衍生的sEV用于下游分析和治疗目的。本文描述的方法将简单的过滤方法与台式离心相结合,从hUC-MSC中分离出高产量和高质量的EV,用于下游分析,包括粒度分析,生物标志物测定和电子显微镜成像。

Protocol

注意:有关此协议中使用的所有材料、设备和软件的详细信息,请参阅 材料表 。 1. 人脐带间充质干细胞及培养 在DMEM中以5×103 / cm2 的接种密度培养hUC-MSC,并补充有8%的人血小板裂解物和1%笔链球菌。将细胞在37°C的5%CO2中孵育。每3天更换一次细胞培养基,以确保细胞正常生长。 将细胞扩增至T175烧瓶中的传代5?…

Representative Results

图2 显示hUC-MSC-sEV在53 nm处具有粒径模式,而其他显著的粒径峰分别为96和115 nm。NTA测量的hUC-MSC-sEVs浓度为7.75×1010 个颗粒/mL。用BCA测定法测量的hUC-MSC-sEVs的蛋白质浓度约为80μg/ mL。 在蛋白质印迹分析中,hUC-MSC-sEVs的外泌体标志物CD9、CD81和TSG101呈阳性条带,但GRP94呈阴性(图3)。GRP94是一种内质网标记物,通常用作sEV的阴性?…

Discussion

EV是间充质干细胞分泌组的重要子集之一,在正常和病理过程中起着至关重要的作用。然而,在过去十年中,尺寸范围在30至200nm之间的sEV已成为无细胞治疗的潜在工具。开发了各种技术来从间充质干细胞中分离sEV。然而,差示超速离心、超滤、基于聚合物的沉淀、免疫亲和捕获和基于微流体的沉淀具有不同的优缺点17。这些分离技术都无法实现高回收率和特异性。因此,研究人?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

该视频的发布得到了My CytoHealth Sdn. Bhd的支持。

Materials

40% acrylamide Nacalai Tesque 06121-95 Western blot
95% ethanol Nacalai Tesque 14710-25 Disinfectants
Absolute Methanol Chemiz 45081 To activate PVDF membrane (Western blot)
Accutase STEMCELL Technologies 7920 Cell dissociation enzyme
ammonium persulfate Chemiz 14475 catalyse the gel polymerisation (Gel electrophoresis
anti-CD 81 (B-11) Santa Cruz Biotechnology sc-166029 Antibody for sEVs marker
anti-TSG 101 (C-2) Santa Cruz Biotechnology sc-7964 Antibody for sEVs marker
Bovine serum albumin Nacalai Tesque 00653-31 PVDF membrane blocking
bromophenol blue Nacalai Tesque 05808-61 electrophoretic color marker
Centricon Plus-70 (100 kDa NMWL) Millipore UFC710008 sEVs isolation
ChemiLumi One L Nacalai Tesque 7880 chemiluminescence detection reagent
CryoStor Freezing Media Sigma-Aldrich C3124-100ML Cell cryopreserve
Dulbecco’s modified Eagle’s medium Nacalai Tesque 08458-45 Cell culture media
ExcelBand Enhanced 3-color High Range Protein Marker SMOBIO PM2610 Protein molecular weight markers
Extra thick blotting paper ATTO buffer reservior (Western blot)
Glycerol Merck G5516 Chemicals for western blot
Glycine 1st Base BIO-2085-500g Chemicals for buffer (Western Blot)
horseradish peroxidase-conjugated mouse IgG kappa binding protein (m-IgGκBP-HRP) Santa Cruz Biotechnology sc-516102 Secondary antibody (Western Blot)
Human Wharton’s Jelly derived Mesenchymal Stem Cells (MSCs) Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The National University Malaysia
mouse antibodies anti-CD 9 (C-4) Santa Cruz Biotechnology  sc-13118 Antibody for sEVs marker
Nanosight NS300 equipped with a CMOS camera, a 20 × objective lens, a blue laser module (488 nm), and NTA software v3.2 Malvern Panalytical, UK
paraformaldehyde Nacalai Tesque 02890-45 Sample Fixation during TEM
penicillin–streptomycin Nacalai Tesque 26253-84 Antibiotic for media
phenylmethylsulfonyl fluoride Nacalai Tesque 27327-81 Inhibit proteases in the sEVs samples after adding lysis buffer
phosphate-buffered saline Gibco 10010023 Washing, sample dilution
polyvinylidene fluoride (PVDF) membrane with
0.45 mm pore size
ATTO To hold protein during protein transfer (Western blot)
protease inhibitor cocktail Nacalai Tesque 25955-11 Inhibit proteases in the sEVs samples after adding lysis buffer
Protein Assay Bicinchoninate Kit Nacalai Tesque 06385-00 Protein measurement
sample buffer solution with 2-ME Nacalai Tesque 30566-22 Reducing agent for western blot
sodium chloride Nacalai Tesque 15266-64 Chemicals for western blot
sodium dodecyl sulfate Nacalai Tesque 31606-62 ionic surfactant during gel electrophoresis
Tecnai G2 F20 S-TWIN transmission electron microscope FEI, USA
tetramethylethylenediamine Nacalai Tesque 33401-72 chemicals to prepare gel
tris-base 1st Base BIO-1400-500g Chemicals for buffer (Western Blot)
 Tween 20 GeneTex GTX30962 Chemicals for western blot
UVP (Ultra Vision Product) CCD imager CCD imager for western blot signal detection

Riferimenti

  1. Théry, C., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles. 7 (1), 1535750 (2018).
  2. Jayabalan, N., et al. Cross talk between adipose tissue and placenta in obese and gestational diabetes mellitus pregnancies via exosomes. Frontiers in Endocrinology. 8, 239 (2017).
  3. Li, T., et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells and Development. 22 (6), 845-854 (2013).
  4. Wang, C., et al. Mesenchymal stromal cell-derived small extracellular vesicles induce ischemic neuroprotection by modulating leukocytes and specifically neutrophils. Stroke. 51 (6), 1825-1834 (2020).
  5. Wei, Y., et al. MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia. Biomaterials. 204, 13-24 (2019).
  6. Liu, W., et al. MSC-derived small extracellular vesicles overexpressing miR-20a promoted the osteointegration of porous titanium alloy by enhancing osteogenesis via targeting BAMBI. Stem Cell Research and Therapy. 12 (1), 1-16 (2021).
  7. Li, F. X. Z., et al. The role of mesenchymal stromal cells-derived small extracellular vesicles in diabetes and its chronic complications. Frontiers in Endocrinology. 12, 1741 (2021).
  8. Jayabalan, N., et al. . Frontiers in Endocrinology. 8, (2017).
  9. Wei, Y., et al. . Biomaterials. 204, 13-24 (2019).
  10. Du, W., et al. Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer. Biomaterials. 133, 70-81 (2017).
  11. Li, P., Kaslan, M., Lee, S. H., Yao, J., Gao, Z. Progress in exosome isolation techniques. Theranostics. 7 (3), 789-804 (2017).
  12. Nicolas, R. H., Goodwin, G. H. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 8 (7), 727 (2019).
  13. Kowal, J., et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences of the United States of America. 113 (8), 968-977 (2016).
  14. Zeringer, E., Barta, T., Li, M., Vlassov, A. V. Strategies for isolation of exosomes. Cold Spring Harbor Protocol. 2015 (4), 319-323 (2015).
  15. Kırbaş, O. K., et al. Optimized isolation of extracellular vesicles from various organic sources using aqueous two-phase system. Scientific Reports. 9 (1), 1-11 (2019).
  16. Ev, B., Ms, K. Using exosomes, naturally-equipped nanocarriers, for drug delivery. Journal of Controlled Release: Official Journal of the Controlled Release Society. 219, 396-405 (2015).
  17. Dragovic, R. A., et al. Isolation of syncytiotrophoblast microvesicles and exosomes and their characterisation by multicolour flow cytometry and fluorescence Nanoparticle Tracking Analysis. Methods. 87, 64-74 (2015).
  18. Tan, K. L., et al. Benchtop isolation and characterisation of small extracellular vesicles from human mesenchymal stem cells. Molecular Biotechnology. 63 (9), 780-791 (2021).
check_url/it/64106?article_type=t

Play Video

Citazione di questo articolo
Koh, B., Tan, K. L., Chan, H. H., Daniel Looi, Q. H., Lim, M. N., How, C. W., Law, J. X., Foo, J. B. A Simple Benchtop Filtration Method to Isolate Small Extracellular Vesicles from Human Mesenchymal Stem Cells. J. Vis. Exp. (184), e64106, doi:10.3791/64106 (2022).

View Video