Summary

密度勾配遠心分離法を用いたヒト糞便からの細菌細胞外小胞の単離と精製(英語)

Published: September 01, 2023
doi:

Summary

本研究では、密度勾配遠心分離(DGC) により ヒトの糞便から濃縮した細菌の細胞外小胞(BEV)を単離・精製する方法を説明し、形態、粒子径、濃度からBEVの物理的特性を特定し、臨床研究および科学研究におけるDGCアプローチの潜在的な応用について議論します。

Abstract

細菌細胞外小胞(BEV)は、細菌由来のナノ小胞で、細菌間および細菌と宿主のコミュニケーションにおいて積極的な役割を果たし、親細菌から受け継いだタンパク質、脂質、核酸などの生理活性分子を輸送します。腸内細菌叢に由来するBEVは、消化管内で作用し、遠隔地の臓器に到達する可能性があるため、生理学や病理学に大きな影響を与えます。ヒトの糞便に由来するBEVの種類、量、役割を探る理論的研究は、腸内細菌叢からのBEVの分泌と機能を理解する上で非常に重要です。これらの調査では、BEVの分離と精製に関する現在の戦略の改善も必要になります。

この研究では、トップダウンとボトムアップの2つの密度勾配遠心分離(DGC)モードを確立することにより、BEVの分離および精製プロセスを最適化しました。BEVの濃縮分布は、フラクション6〜8(F6-F8)で決定されました。このアプローチの有効性は、粒子の形態、サイズ、濃度、およびタンパク質含有量に基づいて評価されました。粒子およびタンパク質の回収率を計算し、特定のマーカーの存在を分析して、2 つの DGC モードの回収率と純度を比較しました。その結果、トップダウン遠心分離モードの方が汚染レベルが低く、ボトムアップモードと同等の回収率と純度を達成していることが示されました。7時間の遠心分離時間は、糞便BEV濃度108/mgを達成するのに十分でした。

糞便とは別に、この方法は、成分と粘度の違いに応じて適切に変更することで、他の体液タイプに適用できます。結論として、この詳細で信頼性の高いプロトコルは、BEVの標準化された分離と精製を容易にし、その後のマルチオミクス分析と機能実験の基礎を築きます。

Introduction

腸は、人体で最も豊富な微生物群集を持つ器官として広く認識されており、細菌の90%以上がコロニー形成と増殖に関与しています1,2。腸内細菌叢は腸内微小環境を調節し、同時に主に腸管関門の障害を介して遠隔臓器の機能障害と相互作用することが広範な証拠によって実証されています3,4。腸内細菌叢の不均衡と炎症性腸疾患(IBD)進行5,6、および腸脳軸を介した認知障害との相関関係を示す証拠が増えています5,6,7,8細菌によって産生される細菌の細胞外小胞(BEV)は、これらの病理学的プロセスにおいて重要な役割を果たします。

BEVは、直径20〜400nmの細菌誘導体をカプセル化するナノスケールの粒子です。それらは、バクテリアとその宿主生物との間の相互作用を促進することが実証されています9,10。これらの粒子は目に見えないにもかかわらず、診断バイオマーカー、治療標的、薬物送達媒体として幅広い用途が期待されているため、研究者からの注目が高まっています11。主に腸内細菌を原料とするヒトの糞便は、BEV研究の生体試料としてよく使用され、水、細菌、脂質、タンパク質、未消化の食物残渣、剥離した上皮細胞などが複雑に混ざり合っています。複雑な糞便組成は、BEVの分離と純度に課題をもたらし、BEVの包括的、客観的、かつ現実的な分析を妨げています。したがって、汚染されたコンポーネントからの干渉を最小限に抑え、BEVの歩留まりを向上させるための効果的な戦略が、早急な対応を必要とする重要な問題として浮上しています。

既存の単離戦略は、超高速遠心分離(UC)、密度勾配遠心分離(DGC)、サイズ排除クロマトグラフィー(SEC)などの技術に大きく依存しています12,13,14,15,16,17。現在、DGCはBEV分離の分野で最も広く適用されている方法の1つであり、サンプルの初期ローディング位置によって決定される「トップダウン」と「ボトムアップ」の2つの沈降フローティングモードを包含しています。これらの方法論は、サイズと密度の格差に基づいて細胞外小胞(EV)を他の成分と区別し、さまざまな純度と回収率を生み出します。これまでの研究では、血液中のリポタンパク質18や尿中のTamm-Horsfallタンパク質19など、体液サンプル中の可溶性タンパク質からEVを適切に分離するには、シングルアプローチ戦略では不十分であることが示されています。さらに、真核生物の細胞外小胞(EEV)のサイズ分布はBEVのサイズ分布と重複することが多いため、BEVの収量を最適化するには、さらなる方法論的強化が必要です。したがって、BEVの研究を進めるには、効果的な分離および精製方法の開発にかかっています。特に、Tulkens et al 15 は、糞便 BEV を EEV から分離するために直交生物物理学的戦略を採用しており、ボトムアップ DGC モードの遠心分離時間は最大18 時間でした。対照的に、この試験では 7 時間に短縮され、グラジエント超遠心分離時間が大幅に短縮され、プロセスが簡素化されました。

本研究では、低速から超高速まで、さまざまな異なる遠心分離速度でBEVを濃縮した後、最適化された緩衝条件下で、2つのDGCモードを用いて糞便BEVを分離および精製しました。形態、粒子径、および濃度に基づく評価は、この強化された分析法による称賛に値する性能を示しました。この研究は、将来の研究の基盤となり、その応用範囲をより広い領域に拡大し、人体におけるBEVの不均一性に関する洞察を提供する可能性があります。また、BEVの分離・分析技術の標準化にも貢献します。

Protocol

南方医科大学南方病院の倫理委員会は、参加者のインフォームドコンセントに基づいて実施されたこの研究を承認しました。ここで採用されているすべての方法は、ヒトマイクロバイオーム国際基準(IHMS:http://www.microbiome-standards.org/)によって提供される標準的な運用ガイドラインに準拠しています。その後のすべてのリキッドハンドリング手順は、バイオセーフティキャビネットまたは超クリ…

Representative Results

BEV富化画分の分布の決定細菌の細胞外小胞(BEV)濃縮画分の分布を決定するために、外径 340 nm での吸光度値を測定するためのブランクコントロールを確立し、測定値とヨウジキサノールガイドラインに基づいて各画分の密度を計算しました(ステップ 8.1)。 表2 は密度の結果を示しており、フラクションF4〜F9が細胞外小胞に典型的に関連する範囲内の密度を示したこ…

Discussion

細菌の細胞外小胞(BEV)は、細菌から分泌される脂質二重層ナノ粒子であり、タンパク質、脂質、核酸、その他の生理活性分子を豊富に含み、細菌の機能的効果の媒介に寄与する20。腸に由来するBEVは、炎症性腸疾患、クローン病、大腸がんなどの疾患の発症に関与し、一般的な代謝に影響を与え、認知機能障害を媒介することが確認されています4,16,17,20,21,2…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

この研究は 、中国国家自然科学基金(82230080)の主要プロジェクトであるNational Science Fund for Distinguished Young Scholars(82025024)の支援を受けました。中国の国家重点研究開発プログラム(2021YFA1300604);中国国家自然科学基金会(81871735、82272438、82002245)広東省著名な若手学者のための広東省自然科学基金(2023B1515020058); 広東省自然科学財団(2021A1515011639); 中国山東省自然科学基金会の主要国家基礎研究開発プログラム(ZR2020ZD11) ポスドク科学財団(2022M720059);南方医科大学南方病院の優れた青少年育成スキーム(2022J001)。

Materials

1 % (w/v) glutaraldehyde (prepared from 2.5 % stock solution in deionized water) ACMEC AP1126 Morphological observation for BEVs using TEM at Step 8.3.3
1 % (w/v) methylcellulose (prepared from original powder in deionized water) Sigma-Aldrich M7027 Morphological observation for BEVs using TEM at Step 8.3.6
1.5 % (w/v) uranyl acetate (prepared from original powder in deionized water) Polysciences 21447-25 Morphological observation for BEVs using TEM at Step 8.3.5
1000 μL, 200 μL, 10 μL Pipette KIRGEN KG1313, KG1212, KG1011 Transfer the solution
5 % (w/v) bovine serum albumin solution (prepared from the original powder in TBST buffer) Fdbio science FD0030 Used in western blotting for blocking at Step 8.5.6
5 × loading buffer Fdbio science FD006 Used in western blotting and Coomassie brilliant blue stain at Step 8.5.1
75 % (v/v) alcohol LIRCON LIRCON-500 mL Surface disinfection
96-well plate Rar A8096 Measure the absorbance values 
Anti-Calnexin antibody Abcam ab92573 Western blotting (Primary Antibody)
Anti-CD63 antibody Abcam ab134045 Western blotting (Primary Antibody)
Anti-CD9 antibody Abcam ab236630 Western blotting (Primary Antibody)
Anti-Flagellin antibody Sino Biological 40067-MM06 Western blotting (Primary Antibody)
Anti-Integrin beta 1 antibody Abcam ab30394 Western blotting (Primary Antibody)
Anti-LPS antibody Thermo Fisher MA1-83152 Western blotting (Primary Antibody)
Anti-LTA antibody Thermo Fisher  MA1-7402 Western blotting (Primary Antibody)
Anti-OmpA antibody CUSABIO CSB-PA359226ZA01EOD, https://www.cusabio.com/ Western blotting (Primary Antibody)
Anti-Syntenin antibody Abcam ab133267 Western blotting (Primary Antibody)
Anti-TSG101 antibody Abcam ab125011 Western blotting (Primary Antibody)
Autoclave ZEALWAY GR110DP Sterilization for supplies and mediums used in the experiment
Balance Mettler Toledo AL104 Balance the tube sample-loaded with PBS
Bicinchoninic acid assay  Fdbio science FD2001 Measure protein content of BEVs at Step 8.2
BioRender BioRender https://app.biorender.com Make the schematic workflow of BEVs isolation and purification showed in Figure 1
Biosafety cabinet Haier HR1200- II B2 Peform the procedures about feces sample handling
Centrifuge 5810 R; Rotor F-34-6-38 Eppendorf 5805000092; 5804727002, adapter: 5804774000 Preprocess for BEVs (Step 3)
Chemiluminescence Apparatus BIO-OI OI600SE-MF Used in western blotting for signal detection at Step 8.5.12
Cytation 5 BioTek F01 Microplate detector for measuring the absorbance (Step 8.1) and fluorescence (Figure 6) values 
Dil-labled low density lipoprotein ACMEC AC12038 Definition of distribution of interfering components 
Electrophoresis equipment Bio-rad 1658033 Used in western blotting for protein separation and transfer at Step 8.5.2, 8.5.3, 8.5.5
Enhanced Chemiluminescence kit HRP  Fdbio science FD8020 Used in western blotting for signal detection at Step 8.5.12
Escherichia coli  American Type Culture Collection ATCC8739 Isolate BEVs as a positive control. Protocol: Dissolve 25 g of the LB powder in 1 L deionized water, and autoclave. Transfer the 800 μL of preserved Escherichia coli into the medium. Cultivate at 37 °C in the incubator shaker. Then centrifuge at 3, 000 × g for 20 min at 4 °C, 12, 000 × g for 30 min at 4 °C, filter the supernatant through 0.22 μm membrane, and perform ultra-speed centrifugation at 160, 000 × g for 70 min at 4 °C. Pellet defined as crude BEVs from Escherichia coli was suspended in 1.2 mL PBS (Step 3, 4).    
Falcon tubes 50 mL KIRGEN KG2811 Preprocess for BEVs (Step 3)
Feto Protein Staining Buffer Absci ab.001.50 Coomassie brilliant blue staining at Step 8.5.4
Filter paper Biosharp BS-TFP-070B Morphological observation for BEVs using TEM at Step 8.3 (Blotting the solution)
Formvar/Carbon supported copper grids  Sigma-Aldrich TEM-FCF200CU50 Morphological observation for BEVs using TEM at Step 8.3
HEPES powder Meilunbio MB6078 Prepare iodixanol buffers with different concentrations for density gradient centrifugation
HRP AffiniPure Goat Anti-Mouse IgG (H+L) Fdbio science FDM007 Western blotting (Secondary Antibody)
HRP AffiniPure Goat Anti-Rabbit IgG (H+L) Fdbio science FDR007 Western blotting (Secondary Antibody)
Incubator shaker Qiangwen DHZ-L Cultivate Escherichia coli 
Kimwipes™ Delicate Task Wipes Kimtech Science 34155 Wipe the inner wall of the ultracentrifuge tube at Step 4.15
LB broth Hopebio HB0128 Cultivate Escherichia coli 
Low temperature freezer (-80 °C) Haier DW-86L338J Store the samples
Methanol Alalddin M116118 Used in western blotting for activating PVDF membrane at Step 8.5.5
Micro tubes 1.5 mL KIRGEN KG2211 Recover fractions after density gradient centrifugation
Micro tubes 2 mL KIRGEN KG2911 Recover fractions after density gradient centrifugation
Micro tubes 5 mL BBI F610888-0001 Recover fractions after density gradient centrifugation
Microplate reader  Thermo Fisher  Multiskan MK3 Measure protein content of BEVs at Step 8.2
Millipore filter 0.22 μm Merck millipore SLGP033RB Filtration sterilization; Material: polyethersulfone, PES
NaCl GHTECH 1.01307.040 Density gradient centrifugation solution
NaOH GHTECH 1.01394.068 Density gradient centrifugation solution (pH adjustment)
Optima™ XPN-100 Beckman Coulter A94469 Ultracentrifugation for BEVs isolation at Step 4, 7
OptiPrep™ Serumwerk Bernburg AG 1893 Density gradient centrifugation stock solution
Orbital Shaker Youning CS-100 Dissolve feces at Step 2
Phosphate buffered saline Procell PB180327 Dissolve feces at Step 2
Pipettor Eppendorf 3120000267, 3120000259 Transfer the solution
Plastic pasteur pipette ABCbio ABC217003-4 Remove supernatant in preprocessing at Step 3.4
Polyvinylidene difluoride (PVDF) membranes Millipore ISEQ00010, IPVH00010 Used in western blotting for protein transfer at Step 8.5.5
Prefabricated polyacrylamide gel, 4–20% 15 Wells ACE F15420Gel Used in western blotting for protein separation at Step 8.5.2, 8.5.3
Primary antibody diluent Fdbio science FD0040 Used in western blotting at Step 8.5.8
Protein ladder Fdbio science FD0672 Used in western blotting and Coomassie brilliant blue stain at Step 8.5
Rapid protein blotting solution UBIO UW0500 Used in western blotting for protein transfer at Step 8.5.5
Rotor SW 32 Ti Swinging-Bucket Rotor Beckman Coulter 369650 Ultracentrifugation for BEVs isolation at Step 4, 7
Syringe 20 mL, 50 mL  Jetway ZSQ-20ML, YCXWJZSQ-50 mL Transfer buffers amd remove supernatant in preprocessing
TBS powder Fdbio science FD1021 Used in western blotting at Step 8.5
Transmission electron microscope (TEM) Hitachi  H-7650 Morphological observation for BEVs at Step 8.3
Tween-20 Fdbio science FD0020 Used in western blotting at Step 8.5
Ultracentrifuge tube Beckman 326823, 355642 Ultracentrifugation for BEVs isolation at Step 4, 7
Ultra-clean bench AIRTECH SW-CJ-2FD Peform the procedures about liquid handling
Water bath Bluepard CU600 Used for measuring protein content of BEVs at Step 8.2.5
ZetaView Particle Metrix S/N 21-734, Software ZetaView (version 8.05.14 SP7) Nanoparticle tracking analysis (NTA) for measuring the particle size and concentrarion of BEVs at Step 8.4

Riferimenti

  1. Costello, E. K., et al. Bacterial community variation in human body habitats across space and time. Science. 326 (5960), 1694-1697 (2009).
  2. Greenhalgh, K., Meyer, K. M., Aagaard, K. M., Wilmes, P. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environmental Microbiology. 18 (7), 2103-2116 (2016).
  3. de Vos, W. M., Tilg, H., Van Hul, M., Cani, P. D. Gut microbiome and health: mechanistic insights. Gut. 71 (5), 1020-1032 (2022).
  4. Zhou, P., Yang, D., Sun, D., Zhou, Y. Gut microbiome: New biomarkers in early screening of colorectal cancer. Journal of Clinical Laboratory Analysis. 36 (5), 24359 (2022).
  5. Paik, D., et al. Human gut bacteria produce Τ(Η)17-modulating bile acid metabolites. Nature. 603 (7903), 907-912 (2022).
  6. Parada Venegas, D., et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers in Immunology. 10, 277 (2019).
  7. Jiang, C., Li, G., Huang, P., Liu, Z., Zhao, B. The Gut microbiota and Alzheimer’s disease. Journal of Alzheimer’s Disease. 58 (1), 1-15 (2017).
  8. Morais, L. H., Schreiber, H. L. t., Mazmanian, S. K. The gut microbiota-brain axis in behaviour and brain disorders. Nature Reviews Microbiology. 19 (4), 241-255 (2021).
  9. Kim, J. H., Lee, J., Park, J., Gho, Y. S. Gram-negative and Gram-positive bacterial extracellular vesicles. Seminars in Cell and Developmental Biology. 40, 97-104 (2015).
  10. Toyofuku, M., Nomura, N., Eberl, L. Types and origins of bacterial membrane vesicles. Nature Reviews Microbiology. 17 (1), 13-24 (2019).
  11. Xie, J., Li, Q., Haesebrouck, F., Van Hoecke, L., Vandenbroucke, R. E. The tremendous biomedical potential of bacterial extracellular vesicles. Trends in Biotechnology. 40 (10), 1173-1194 (2022).
  12. Coumans, F. A. W., et al. Methodological guidelines to study extracellular vesicles. Circulation Research. 120 (10), 1632-1648 (2017).
  13. Northrop-Albrecht, E. J., Taylor, W. R., Huang, B. Q., Kisiel, J. B., Lucien, F. Assessment of extracellular vesicle isolation methods from human stool supernatant. Journal of Extracellular Vesicles. 11 (4), 12208 (2022).
  14. Park, Y. E., et al. Microbial changes in stool, saliva, serum, and urine before and after anti-TNF-α therapy in patients with inflammatory bowel diseases. Scientific Reports. 12 (1), 6359 (2022).
  15. Tulkens, J., De Wever, O., Hendrix, A. Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical separation and biochemical characterization. Nature Protocols. 15 (1), 40-67 (2020).
  16. Tulkens, J., et al. Increased levels of systemic LPS-positive bacterial extracellular vesicles in patients with intestinal barrier dysfunction. Gut. 69 (1), 191-193 (2020).
  17. Kang, C. S., et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PloS one. 8 (10), 76520 (2013).
  18. Simonsen, J. B. What are we looking at? Extracellular vesicles, lipoproteins, or both. Circulation Research. 121 (8), 920-922 (2017).
  19. Correll, V. L., et al. Optimization of small extracellular vesicle isolation from expressed prostatic secretions in urine for in-depth proteomic analysis. Journal of Extracellular Vesicles. 11 (2), 12184 (2022).
  20. Liang, X., et al. Gut bacterial extracellular vesicles: important players in regulating intestinal microenvironment. Gut Microbes. 14 (1), 2134689 (2022).
  21. Alberti, G., et al. Extracellular vesicles derived from gut microbiota in inflammatory bowel disease and colorectal cancer. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czech Republic. 165 (3), 233-240 (2021).
  22. Díez-Sainz, E., Milagro, F. I., Riezu-Boj, J. I., Lorente-Cebrián, S. Effects of gut microbiota-derived extracellular vesicles on obesity and diabetes and their potential modulation through diet. Journal of Physiology and Biochemistry. 78 (2), 485-499 (2022).
  23. Lajqi, T., et al. Gut microbiota-derived small extracellular vesicles endorse memory-like inflammatory responses in murine neutrophils. Biomedicines. 10 (2), 442 (2022).
  24. Lee, K. E., et al. The extracellular vesicle of gut microbial Paenalcaligenes hominis is a risk factor for vagus nerve-mediated cognitive impairment. Microbiome. 8 (1), 107 (2020).
  25. Villard, A., Boursier, J., Andriantsitohaina, R. Bacterial and eukaryotic extracellular vesicles and nonalcoholic fatty liver disease: new players in the gut-liver axis. American Journal of Physiology-Gastrointestinal and Liver Physiology. 320 (4), G485-G495 (2021).
  26. Wei, S., et al. Outer membrane vesicles enhance tau phosphorylation and contribute to cognitive impairment. Journal of Cellular Physiology. 235 (5), 4843-4855 (2020).
  27. Bitto, N. J., Kaparakis-Liaskos, M. Methods of bacterial membrane vesicle production, purification, quantification, and examination of their immunogenic functions. Methods in Molecular Biology. 2523, 43-61 (2022).
  28. Stentz, R., Miquel-Clopés, A., Carding, S. R. Production, isolation, and characterization of bioengineered bacterial extracellular membrane vesicles derived from Bacteroides thetaiotaomicron and their use in vaccine development. Methods in Molecular Biology. 2414, 171-190 (2022).
  29. Zhang, Q., Jeppesen, D. K., Higginbotham, J. N., Franklin, J. L., Coffey, R. J. Comprehensive isolation of extracellular vesicles and nanoparticles. Nature Protocols. 18 (5), 1462-1487 (2023).
  30. Iwai, K., Minamisawa, T., Suga, K., Yajima, Y., Shiba, K. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. Journal of Extracellular Vesicles. 5, 30829 (2016).
  31. Vandeputte, D., et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut. 65 (1), 57-62 (2016).
  32. Wen, M., et al. Bacterial extracellular vesicles: A position paper by the Microbial Vesicles Task Force of the Chinese Society of Extracellular Vesicles. Interdisciplinary Medicine. 1, 12046 (2023).
check_url/it/65574?article_type=t

Play Video

Citazione di questo articolo
Xue, Y., Huang, X., Ou, Z., Wu, Y., Li, Q., Huang, X., Wen, M., Yang, Y., Situ, B., Zheng, L. Isolation and Purification of Bacterial Extracellular Vesicles from Human Feces Using Density Gradient Centrifugation. J. Vis. Exp. (199), e65574, doi:10.3791/65574 (2023).

View Video