Summary

鉴定转基因鱼的完整的大脑中的神经元的电活动记录

Published: April 30, 2013
doi:

Summary

在这段视频中,我们将演示如何记录保留复杂的神经回路在整个大脑的准备,从确定单个神经元的电活动。我们使用转基因鱼中,促性腺激素释放激素(GnRH)的神经元与用于识别完整的大脑制备一种荧光蛋白基因的标签。

Abstract

了解细胞的生理调节复杂的行为的神经回路是通过使用模型的系统,在该系统中,可以进行这项工作,在一个完整的大脑制备的中枢神经系统的神经电路保持不变大大增强。我们使用转基因鱼中,促性腺激素释放激素(GnRH)的神经元与用于识别完整的大脑中的绿色荧光蛋白基因的标签。鱼GnRH神经元有多个种群,它们的功能是依赖于他们的位置在大脑和GnRH基因,他们表达1。我们集中示范GnRH3在终端转基因青鳉鱼( 图1B和C)使用完整的大脑嗅球神经(田纳西州)的神经元位于。研究表明,青鳉的TN-GnRH3神经元是神经调节,中枢神经系统作为信息发射器从外部环境; T嘿,不要直接发挥作用,调节垂体-性腺功能,做知名GNRH1丘脑神经元2,3。进补动作电位射击TN-GnRH3神经元的自发模式的内在属性4-6,频率是调制的同种2和神经肽kisspeptin 1 5的视觉线索。在这段视频中,我们使用了一个稳定的转基因青鳉这TN-GnRH3的神经元表达了含转基因的启动子区域Gnrh3向您展示如何识别神经元,并监察他们在整个大脑的电活动与增强型绿色荧光蛋白7制备例6。

Protocol

1。成人脑解剖鳉麻醉成年男性或女性( 图1A)浸泡5毫升的MS-222(150毫克/升,pH值7.4),等待一两分钟后,鳃变动之前已经停止斩首。加州洛杉矶大学的机构动物护理和使用委员会批准的所有程序。 杀头在盐水鱼的鱼鳃盖的尾端用剪刀在一个直径为60毫米的培养皿。 传输鱼头一个直径为35毫米的培养皿中,一半充满了盐水鱼及内衬SYLGARD有抑郁症,它为大脑解剖定…

Representative Results

GFP标记的TN-GnRH3神经元从切除大脑的青鳉鱼的双边集群的一个例子示于图1B和图1C。每个集群包含大约8-10 GnRH神经元。自发的神经元活动的目标TN-GnRH3的被记录在电流钳模式(I = 0),与典型的发射率0.5-6赫兹。动作电位射击模式是一个典型的补药或跳动模式,一个相当普通的峰峰间隔。样品的痕迹显示在图2(2A:宽松的补丁; 2B:全细胞)。 <p class="jove_conten…

Discussion

激素3:提供了独特的绿色荧光蛋白转基因鱼模型来研究的神经生理机制神经集成中央控制和调节的行为,都直接和间接地参与再现3 8-10。这个模型系统的显着优势之一是,许多GnRH3表达GFP神经元的大脑腹面,可以相对容易获得的神经元电生理记录,不破坏神经回路6,9,11,12( 图图1B图1C,图3A3B)。在这段视频中,我们已经表明了…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢孟博士林青女士远东的技术援助。这项工作是从美国国立卫生研究院HD053767(转包NLW),由授出从生理和副校长办公室的研究,美国加州洛杉矶大学(NLW)部的资金支持。

Materials

Name Company Catalog Number Comments
Microscope Olympus BX50W (Upright)
Amplifier Axon Instruments Axoclamp 200B
A-D converter Computer Interference Corp. Digidata ITC-18
Cooled CCD camera PCO Computer Optics Sensicam
Xenon lamp Sutter Instruments Co.
GFP filter set Chroma Technologies
Imaging Software Intelligent Imaging Innovations Slidebook software
Electrophysiology Data Acquisition Software Axon Instruments Axograph software
Electrophysiology Data Acquisition Software AD Instruments Inc. PowerLab
Headstage for electrophysiology Axon Instruments CV 203BU
Micromanipulator Sutter Instrument Co MP-285
Recording Chamber Platform Warner Instrument Corp. P1
Recording Chamber Warner Instrument Corp. RC-26G
Electrode Puller Sutter instruments P87
Filament for electrode puller Sutter Instruments FB330B 3.0 mm wide trough filament
1.5 mm glass capillaries World Precision Instruments 1B150-4 Microelectrode for recording
Syringe Becton Dickinson 309586 3 ml
MS-222 Sigma E10521-10G Ethyl 3-aminobenzoate methanesulfonate salt
Fish saline mM: 134 NaCl; 2.9 KCl; 2.1 CaCl2; 1.2 MgCl2; 10 HEPES
Electrode solution (loose-patch) mM: 150 NaCl; 3.5 KCl; 2.5 CaCl2; 1.3 MgCl2; 10 HEPES; 10 glucose
Electrode solution (whole-cell patch) mM: 112.5 K-gluconate; NaCl; 17.5 KCl; 0.5 CaCl2; 1 MgCl2; 5 MgATP; 1 EGTA; 10 HEPES; 1 GTP; 0.1 leupeptin;10 phospho-creatine

References

  1. Kah, O., Lethimonier, C., Lareyre, J. J. Gonadotrophin-releasing hormone (GnRH) in the animal kingdom. J. Soc. Biol. 198 (1), 53-60 (2004).
  2. Ramakrishnan, S., Wayne, N. L. Social cues from conspecifics alter electrical activity of gonadotropin-releasing hormone neurons in the terminal nerve via visual signals. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297 (1), R135-R141 (2009).
  3. Abe, H., Oka, Y. Mechanisms of neuromodulation by a nonhypophysiotropic GnRH system controlling motivation of reproductive behavior in the teleost. 57 (6), 665-674 (2011).
  4. Oka, Y. Tetrodotoxin-resistant persistent Na+ current underlying pacemaker potentials of fish gonadotrophin-releasing hormone neurones. J. Physiol. 482 (Pt. 1), 1-6 (1995).
  5. Zhao, Y., Wayne, N. L. Effects of Kisspeptin1 on Electrical Activity of an Extrahypothalamic Population of Gonadotropin-Releasing Hormone Neurons in Medaka. PLoS One. 7 (5), e37909 (2012).
  6. Wayne, N. L., et al. Whole-cell electrophysiology of gonadotropin-releasing hormone neurons that express green fluorescent protein in the terminal nerve of transgenic medaka (Oryzias latipes). Biol. Reprod. 73 (6), 1228-1234 (2005).
  7. Okubo, K., et al. Forebrain gonadotropin-releasing hormone neuronal development: insights from transgenic medaka and the relevance to X-linked Kallmann syndrome. Endocrinology. 147 (3), 1076-1084 (2006).
  8. Okubo, K., et al. A novel form of gonadotropin-releasing hormone in the medaka, Oryzias latipes. Biochem. Biophys. Res. Commun. 276 (1), 298-303 (2000).
  9. Ramakrishnan, S., et al. Acquisition of spontaneous electrical activity during embryonic development of gonadotropin-releasing hormone-3 neurons located in the terminal nerve of transgenic zebrafish (Danio rerio). Gen. Comp. Endocrinol. 168 (3), 401-407 (2010).
  10. Abraham, E., et al. Targeted gonadotropin-releasing hormone-3 neuron ablation in zebrafish: effects on neurogenesis, neuronal migration, and reproduction. Endocrinology. 151 (1), 332-340 (2010).
  11. Wayne, N. L., Kuwahara, K. Beta-endorphin alters electrical activity of gonadotropin releasing hormone neurons located in the terminal nerve of the teleost medaka (Oryzias latipes. Gen. Comp. Endocrinol. 150 (1), 41-47 (2007).
  12. Oka, Y. Three types of gonadotrophin-releasing hormone neurones and steroid-sensitive sexually dimorphic kisspeptin neurones in teleosts. J. Neuroendocrinol. 21 (4), 334-338 (2009).
  13. Molleman, A. . Patch Clamping: An Introductory Guide To Patch Clamp Electrophysiology. , (2003).
check_url/kr/50312?article_type=t

Play Video

Cite This Article
Zhao, Y., Wayne, N. L. Recording Electrical Activity from Identified Neurons in the Intact Brain of Transgenic Fish. J. Vis. Exp. (74), e50312, doi:10.3791/50312 (2013).

View Video