Summary

从脑室周围地区的成年大鼠和人类脊髓神经分离干/祖细胞

Published: May 14, 2015
doi:

Summary

The adult mammalian spinal cord contains neural stem/progenitor cells (NSPCs) that can be isolated and expanded in culture. This protocol describes the harvesting, isolation, culture, and passaging of NSPCs generated from the periventricular region of the adult spinal cord from the rat and from human organ transplant donors.

Abstract

成年鼠和人的脊髓神经干/祖在生长因子富集培养基中培养细胞(NSPCs)允许,自我更新的和具有发泡性的神经干细胞的多能增殖。在血清条件下,这些多能NSPCs将分化,产生神经元,星形胶质细胞和少突胶质。所收获的组织被酶促解离以木瓜蛋白酶-EDTA溶液,然后机械地分离,并通过一个不连续密度梯度分离,得到是镀在补充有表皮生长因子(EGF)的Neurobasal培养基,碱性成纤维细胞生长因子的单个细胞悬浮液(bFGF的),和肝素。成年大鼠脊髓NSPCs是生长的贴壁培养的自由浮动的神经球和成人脊髓NSPCs培养。在这些条件下,成人脊髓NSPCs增殖,前体细胞的明确标记,并在通道可连续展开。这些细胞可以bê研究在体外响应于各种刺激,而外部因素可以被用来促进谱系限制检查神经干细胞的分化。多能NSPCs或其后代也可以移植到各种动物模型来评估再生修复。

Introduction

NSPCs致力于能够自我更新和体外易于扩展神经系多能细胞。我们将这些细胞作为神经干/祖细胞的混合群,因为它们显示自我更新的多能干细胞和更限制性祖细胞的性质。 NSPCs被发现在胎儿和成人脑和脊髓1,2-两者。在成人中,NSPCs通常静态和驻留特定龛包括脑室下区衬侧脑室2-4,以及围绕脊髓5,6的中央管室周区域内。

通常情况下,NSPCs如在无血清培养基中自由浮动的神经球或以贴壁单层补充EGF和bFGF,这对于干细胞/祖细胞群选择分裂素中培养。最初由雷诺和Weiss 2开发的神经球测定中,是最常用的培养和扩大的神经干细胞。 NSPCs显示多能的时候都接种于生长因子 – 自由含培养基的血清,分化成神经元,星形胶质细胞和少突胶质。多能,自我更新NSPCs可以分离和培养从成年啮齿动物脊髓当培养组织包括中央管6,7的区域。使用从相对于其他区域产生的细胞在成人脊髓生成NSPCs的潜在的优点是,这些组织特异性细胞最相似的细胞在脊髓被丢失或损坏的以下的损伤或疾病。

以前的工作表明,从成人脊髓衍生神经球可能不会传播长期或传代来产生足够数量的细胞8,9。但是,在培养条件的修改中,我们报道了成人脊髓源性NSPCs膨胀和移植,这表明自我更新和多能NSPCs可以从器官移植供体10的成人脊髓中分离。首先,大多数的白质解剖和这些培养细胞中除去生长因子富含介质粘附基板上选择用于增殖成人脊髓NSPCs。在这个协议中,我们描述了从成年大鼠和人类器官移植的供体,脑室周围组织的解剖,并NSPCs的分离,培养和扩大了脊髓的收获。

Protocol

所有动物的程序都是由大学健康网络的动物保健委员会,多伦多加拿大批准,按照既定的指南编制的加拿大委员会关于动物保护实验动物的护理和使用的政策。对于人类脊髓组织的收获,从大学健康网络研究伦理委员会,并从延龄-礼品生活基金会负责监督器官捐赠在加拿大安大略省获得批准。 1.准备解剖缓冲区和文化传媒对于大鼠脊髓的隔离,制备100ml夹层缓冲液(1…

Representative Results

在EFH培养基中生长在悬浮培养成年大鼠脊髓细胞将配成1日当周首次电镀内小神经球(未分化细胞的克隆)。在原代培养物,最镀细胞就会死亡和生长因子响应的干细胞会增殖,并选择用于EFH介质。由通道3,将有大量的自由浮动的神经球大约100微米的直径( 图2A)。神经球是圆的和相高亮,并且在高的放大倍率,纤毛状microspikes被看见从细胞上球体它们是神经球不像细胞碎片( ?…

Discussion

在大鼠脊髓组织护理的解剖应采取在执行椎板切除不要损坏脊髓。这是比较容易分离脑室周围组织时的脊髓节段都完好无损。的组织片段应全部浸入夹层缓冲器和上覆脑膜和白质可以被切掉为的纵向条带microscissors。另外,精细组织钳可以用来剥白质离开。

为隔离程序NSPCs,我们使用了木瓜蛋白酶EDTA解离法结合机械研磨以解离的大鼠和人的脊髓组织。相比于其他蛋白酶,木瓜?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge support from Spinal Cord Injury Ontario, the Ontario-China Research and Innovation Fund, the Toronto General and Western Hospital Foundation, and Physicians’ Services Incorporated Foundation. The authors thank Dr. Tasneem Zahir for expert advice in human spinal cord NSPC culture, and Drs. Cindi Morshead and Iris Kulbatski for their expert advice in rat spinal cord NSPC isolation.

Materials

1X PBS Life Technologies #10010023 Dissection buffer
1X HBSS Life Technologies #14175095 Dissection buffer
D-glucose Sigma # G-6152 Prepare 30% glucose stock solution for dissection buffer and hormone mix
Penicillin-Streptomycin Life Technologies #15140-148 Dissection buffer and culture medium
Neurobasal-A  Life Technologies #10888-022 Culture medium
L-glutamine, 200mM Life Technologies #25030-081 Culture medium
B27 Life Technologies #12587010 Culture medium
DMEM Life Technologies #11885084 Hormone mix
F12 Life Technologies #21700-075 Hormone mix
NaHCO3 Sigma # S-5761 Prepare 7.5% NaHCO3 stock solution for hormone mix
HEPES Sigma #H9136 Prepare 1M HEPES stock solution for hormone mix
Insulin Sigma #I-5500 Hormone mix
Apo-transferrin Sigma #T-2252 Hormone mix
Putrescine Sigma # P7505 Hormone mix
Selenium Sigma #S-9133 Hormone mix
Progesterone Sigma #P-6149 Hormone mix
EGF, mouse Sigma #E4127 Prepare 100 μg/ml stocks in B27 and aliquot; EFH medium
EGF, human recombinant Sigma #E9644 Prepare 100 μg/ml stocks in B27 and aliquot; EFH medium
bFGF, human recombinant Sigma #F0291 Prepare 100 μg/ml stocks in B27 and aliquot; EFH medium 
Heparin, 10000U Sigma #H3149 Prepare 27.3 mg/ml stocks in hormone mix and aliquot; EFH medium
Papain dissociation kit Worthington Biochemicals #LK003150 Contains EBSS, papain, DNase, ovomucoid protease inhibitor with BSA
Sodium Pentobarbital Bimeda – MTC Animal Health Inc DIN 00141704
Tissue Forceps: Addisons Fine Science Tools #11006-12  Serrated standard tip; micro-tip also available
Fine Forceps: Dumont #4 Fine Science Tools #11241-30
Microscissors Fine Science Tools #15024-10 Round-handled Vannas
Rongeurs Bausch & Lomb N1430
10mm Petri dishes  Nunc 1501
T25 Culture flasks Nunc 156367
40 μm nylon cell strainer VWR CA21008-949
6 well plates Nunc CA73520-906
Matrigel, growth factor reduced (100X) Corning 354230 Thaw according to directions and freeze aliquots; use diluted at a ratio of 40 μl Matrigel: 1 ml SFM

References

  1. Gage, F. H. Mammalian neural stem cells. Science. 287, 1433-1438 (2000).
  2. Reynolds, B. A., Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 255, 1707-1710 (1992).
  3. Gritti, A., et al. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci. 16, 1091-1100 (1996).
  4. Morshead, C. M., et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron. 13, 1071-1082 (1994).
  5. Weiss, S., et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci. 16, 7599-7609 (1996).
  6. Martens, D. J., Seaberg, R. M., van der Kooy, D. In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cord. Eur J Neurosci. 16, 1045-1057 (2002).
  7. Kulbatski, I., et al. Oligodendrocytes and radial glia derived from adult rat spinal cord progenitors: morphological and immunocytochemical characterization. J Histochem Cytochem. 55, 209-222 (2007).
  8. Akesson, E., et al. Long-term culture and neuronal survival after intraspinal transplantation of human spinal cord-derived neurospheres. Physiol Behav. 92, 60-66 (2007).
  9. Dromard, C., et al. Adult human spinal cord harbors neural precursor cells that generate neurons and glial cells in vitro. J Neurosci Res. 86, 1916-1926 (2008).
  10. Mothe, A. J., Zahir, T., Santaguida, C., Cook, D., Tator, C. H. Neural stem/progenitor cells from the adult human spinal cord are multipotent and self-renewing and differentiate after transplantation. PLoS One. 6, e27079 (2011).
  11. Huettner, J. E., Baughman, R. W. Primary culture of identified neurons from the visual cortex of postnatal rats. J Neurosci. 6, 3044-3060 (1986).
  12. Azari, H., Rahman, M., Sharififar, S., Reynolds, B. A. Isolation and expansion of the adult mouse neural stem cells using the neurosphere assay. J Vis Exp. , (2010).
  13. Reynolds, B. A., Rietze, R. L. Neural stem cells and neurospheres–re-evaluating the relationship. Nat Methods. 2, 333-336 (2005).
  14. Singec, I., et al. Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat Methods. 3, 801-806 (2006).
  15. Louis, S. A., Azari, H., Sharififar, S., Vedam-Mai, V., Reynolds, B. A. Neural-colony forming cell assay: an assay to discriminate bona fide neural stem cells from neural progenitor cells. J Vis Exp. , (2011).
  16. Louis, S. A., et al. Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay. Stem Cells. 26, 988-996 (2008).
  17. Conti, L., et al. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol. 3, e10 (2005).
  18. Pollard, S. M., Conti, L., Sun, Y., Goffredo, D., Smith, A. Adherent neural stem (NS) cells from fetal and adult forebrain. Cereb Cortex. 16, i112-i120 (2006).
check_url/kr/52732?article_type=t

Play Video

Cite This Article
Mothe, A., Tator, C. H. Isolation of Neural Stem/Progenitor Cells from the Periventricular Region of the Adult Rat and Human Spinal Cord. J. Vis. Exp. (99), e52732, doi:10.3791/52732 (2015).

View Video