Summary

Трехмерная Суперразрешение Микроскопия F-актин филаментов интерферометрической фотоактивированного локализации микроскопии (iPALM)

Published: December 01, 2016
doi:

Summary

Мы представляем протокол для применения интерферометрических фотоактивированного локализации микроскопии (iPALM), 3-х мерной локализации одной молекулы методом микроскопии сверхвысокого разрешения, к визуализации актинового цитоскелета в прикрепленных клетках млекопитающих. Такой подход позволяет на основе света визуализации наноразмерных структурных особенностей, которые в противном случае остаются нерешенными обычными дифракционной оптической микроскопии.

Abstract

Флуоресцентная микроскопия позволяет осуществлять прямую визуализацию конкретных биомолекул внутри клетки. Тем не менее, для обычной флуоресцентной микроскопии, пространственное разрешение ограничено дифракцией до ~ 200 нм в плоскости изображения и> 500 нм вдоль оптической оси. В результате, флуоресцентной микроскопии уже давно сильно ограничены в наблюдении ультраструктурных признаков внутри клеток. Новейшая разработка методов микроскопии сверхвысокого разрешения преодолела это ограничение. В частности, появление фотопереключаемых флуорофоров позволяет локализации на основе суперразрешением микроскопии, которая обеспечивает разрешающую способность приближающейся масштаб молекулярной длины. Здесь мы опишем применение трехмерного супер способа разрешения микроскопии на основе одиночной молекулы локализации микроскопии и многофазных интерферометрии, называемой интерферометрической фотоактивированного локализации микроскопии (iPALM). Этот метод обеспечивает почти изотропный разрешения напорядка 20 нм во всех трех измерениях. Протоколы для визуализации волокнистый актин цитоскелета, в том числе подготовки образцов и эксплуатации прибора iPALM, описаны здесь. Эти протоколы также могут быть легко адаптированы и поучительно для изучения других ультраструктурных признаков в клетках.

Introduction

Визуализация сложных клеточных структур уже давно неотъемлемой частью биологических идей и открытий. Хотя флуоресцентная микроскопия позволяет получать изображения клетки с высокой молекулярной специфичности, его разрешающая способность ограничена дифракции до ~ 200 нм в плоскости изображения (X, Y, или поперечный размер) и> 500 нм вдоль оптической оси (Z, или осевого размера) 1,2. Таким образом, наблюдение за ультраструктурных особенностей исторически ограничена электронной микроскопии (ЭМ). К счастью, в последнее время развитие суперразрешением микроскопии обходили это ограничение, что позволяет пространственное разрешение в 10 – диапазоне 1-6 100 нм. В частности, Суперразрешение подходы , основанные на одной молекулы локализации, известной под аббревиатурами , такими как PALM (фотоактивированного локализация микроскопия) 4, FPALM (флуоресценция фотоактивированного локализации микроскопия) 5 (d) STORM (прямая Стохастический оптическая микроскопия Реконструкция) 6,7, PAINT ( PoINT Накопление для работы с изображениями наноразмерных Топография) 8, GSDIM (State Ground Истощение Микроскопия с последующей индивидуальной молекулярной возвращения) 9 или SMACM (Single-Molecule Active-Control Микроскопия) 10, а также их 3-мерные (3D) реализации, такие как интерферометрическое PALM (iPALM) 11 или 3D-STORM 12, был ценным в выявлении новых идеи в наноразмерных организации многочисленных биологических структур, в том числе аксонов и синапсов 13, очаговые спайки 14,15, межклеточных соединений 16, ядерные поры 17 и центросомы 18-20, чтобы назвать несколько.

Еще одна особенность ультраструктурным в клетках, для которых Суперразрешение микроскопия потенциально полезным является актин цитоскелета. Комплекс плетение нитчатых (F) актина в клетки коры головного мозга играет существенную роль в контроле клеточного формы и механических свойств 21. Организация оF F-актин активно и динамично регулируется , хотя многочисленные регуляторные белки , которые оказывают сильное влияние на полимеризацию, сшивание, оборот, стабильность и топологию сети 22. Тем не менее, хотя характеристика F-актин сетчатой ​​архитектуры имеет важное значение для механистической способности проникновения в суть разнообразных клеточных процессов, малый размер (~ 8 нм) из F-актина нитей затрудняет их наблюдение с помощью обычной дифракционной световой микроскопии; Таким образом, визуализация актина тонкой структуры до настоящего времени исключительно в исполнении EM. Здесь мы описываем протоколы для визуализации F-актин цитоскелета в прикрепленных клетках млекопитающих, используя суперразрешением метод микроскопии iPALM , чтобы воспользоваться его очень высокой способности точности в 3D 11,23. Хотя прибор iPALM является узкоспециализированной, инструкция по настройке такого инструмента был описан недавно 23, в то время как доступ к микроскоп iPALM , организованном ХоWard Hughes Medical Institute также доступны для научного сообщества с минимальными затратами. Кроме того, способы получения образцов , описанные здесь , непосредственно применимы к альтернативным подходам 3D Super Resolution, таких как те , которые основаны на астигматизма расфокусировки функции рассеяния точки (PSF) 12 или би-плоскости обнаружения 24, которые более широко доступны.

Отметим , что необходимый компонент для одной молекулы локализации на основе суперразрешением микроскопии в целом является фотопереключаемых Флуорофор 25, что позволяет трем критическим требованиям для одной молекулы локализации на основе суперразрешением микроскопии должны быть выполнены: я) высокой одной молекулы яркость и контрастность по отношению к фоновых сигналов; б) разреженный распределение одиночных молекул в заданном кадре изображения; и III) высокая пространственная плотность маркировки, достаточной для захвата профиля базовой структуры (также известный как Найквиста-Шаnnon критерий выборки) 26. Таким образом, для удовлетворительных результатов, особое внимание следует уделять одинаково на обоих надлежащей подготовки образцов для оптимизации флуорофора photoswitching и сохранить основную ультраструктуры, а также на приобретение приборов и аспектов экспериментов.

Protocol

1. Подготовка изображений образцов Так как фон сигналы флуоресценции мешают флуоресценции от флуорофоров меток, очистить coverglasses сначала ополаскивают в деионизированной воде (DDH 2 O) , а затем сушка на воздухе их с помощью сжатого воздуха. Затем выполняют плазменного травлени?…

Representative Results

Критические требования к iPALM являются выравнивание, регистрация и калибровка оптических систем. Они необходимы для обеспечения надлежащего вмешательства в течение 3-х ходового светоделитель реквизита для Z-координате экстракции. Для обеспечения непрерывного монито?…

Discussion

Оптическая система iPALM основана на 4-П двойственной оппозитных объективном конструкции, как показано на рисунке 1А. Установка построена с использованием как специально обработанную и коммерческие оптико-механические части, как описано ранее 23 и приведены в таблице</…

Disclosures

The authors have nothing to disclose.

Acknowledgements

YW и PK выражают глубокую признательность финансовую поддержку Сингапурского Национального исследовательского фонда, присужденной PK (СРН-NRFF-2011-04 и NRF2012NRF-CRP001-084). Мы также благодарим MBI открытые лаборатории и основные микроскопию средства для поддержки инфраструктуры.

Materials

optical table Newport, CA  RS4000 iPALM, installed on 4 Newport Stabilizer vibration isolators 
vibration isolator for optical table Newport, CA  S-2000 
laser-642 Newport, CA  1185055 output power=100mw
laser-561 Newport, CA  1168931 output power=200mw
laser-488 Newport, CA  1137970 output power=200mw
laser-405 Newport, CA  1142279 output power=100mw
broadband dielectric mirrors  Thorlabs, NJ BB1-E02 laser combiner
dichroic beamsplitter  Semrock, NY LM01-427-25
acousto-optic tunable filter  AA Opto-Electronic, France AOTFnC-VIS-TN
Linear polarizer Newport, CA  05LP-VIS-B
baseplate local workshop customized
turning mirror (22.5°) Reynard Corpporation, CA customized 22.5° mirror
motorized optic mounts  New Focus, CA 8816
motorized XYZ translation stage Thorlabs, NJ MT3/M-Z6 sample holder
T-Cube DC servo motor controller Thorlabs, NJ TDC001
Piezo Phase Shifter Physik Instrumente, Germany S-303.CD
objective lens Nikon, Japan MRD01691 objective. Apo TIRF 60X/1.49oil
translation stage New Focus, CA 9062-COM-M
Pico Motor Actuator New Focus, CA 8301
rotary Solenoid/Shutter DACO Instruments, CT 5423-458
3-way beam splitter Rocky Mountain Instruments, CO customized beamsplitter
Piezo Z/Tip/Tilt scanner Physik Instrumente, Germany S-316.10
motorized five-axis tilt aligner  New Focus, CA 8081
Picmotor ethernet controller New Focus, CA 8752
Piezo controllers/amplifier/digital operation module Physik Instrumente, Germany E-509/E-503/E-517
band-pass filter Semrock, NY FF01-523/20 filters
band-pass filter Semrock, NY FF01-588/21
band-pass filter Semrock, NY FF01-607/30
band-pass filter Semrock, NY FF01-676/37
notch filter Semrock, NY NF01-405/488/561/635
motorized filter wheel with controllter Thorlabs, NJ FW103H
EMCCD Andor, UK  DU-897U-CSO-#BV 3 sets
Desktop computers for controlling cameras and synchronization Dell Precision T3500 PC, 4 sets
coverslips with fiducial Hestzig, VA 600-100AuF sample preparation. fiducial marks with various density and spectra  available
fibronectin  Millipore, MT FC010
paraformaldehyde Electron Microscopy Sciences, PA 15710 fixation. 16%
glutaraldehyde  Electron Microscopy Sciences, PA 16220 25%
triton X-100 Sigma aldrich, MO T8787
HUVEC cells Life Technologies, CA C-015-10C
Medium 200 Life Technologies, CA M-200-500
Large Vessel Endothelial Factors Life Technologies, CA A14608-01
Dulbecco's Phosphate Buffered Saline 14190367
Pennicillin/Streptomycin 15140122
Trypsin/EDTA Life Technologies, CA 25200056
PIPES Sigma aldrich, MO P1851 PHEM
HEPES 1st base, Malaysia BIO-1825
EGTA Sigma aldrich, MO E3889
MgCl2 Millipore, MT 5985
 Alexa Fluor 647 Phalloidin Invitrogen, CA A22287 staining
sodium borohydride (NaBH4)  Sigma aldrich, MO 480886 quenching
glucose 1st base, Malaysia BIO-1101 imaging buffer
glucose oxidase Sigma aldrich, MO G2133
catalase Sigma aldrich, MO C9322
cysteamine  Sigma aldrich, MO 30070
Epoxy Thorlabs, NJ G14250
vaseline Sigma aldrich, MO 16415 sample sealing
lanolin Sigma aldrich, MO L7387
parafin wax Sigma aldrich, MO 327204
Immersion oil  Electron Microscopy Sciences, PA 16915-04 imaging. Cargille Type HF

References

  1. Kanchanawong, P., Waterman, C. M. Localization-based super-resolution imaging of cellular structures. Methods Mol Biol. 1046, 59-84 (2013).
  2. Bertocchi, C., Goh, W. I., Zhang, Z., Kanchanawong, P. Nanoscale imaging by super resolution fluorescence microscopy and its emerging applications in biomedical research. Crit Rev Biomed Eng. 41, 281-308 (2013).
  3. Kanchanawong, P., Waterman, C. M. Advances in light-based imaging of three-dimensional cellular ultrastructure. Curr Opin Cell Biol. 24, 125-133 (2012).
  4. Betzig, E., et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 313, 1642-1645 (2006).
  5. Hess, S. T., Girirajan, T. P., Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J. 91, 4258-4272 (2006).
  6. Rust, M. J., Bates, M., Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 3, 793-795 (2006).
  7. Heilemann, M., et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Edit. 47, 6172-6176 (2008).
  8. Sharonov, A., Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. P Natl Acad Sci USA. 103, 18911-18916 (2006).
  9. Fölling, J., Bossi, M., Bock, H., Medda, R., Wurm, C. A., Hein, B., Jakobs, S., Eggeling, C., Hell, S. W. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods. 5, 943-945 (2008).
  10. Biteen, J., et al. Single-moldecule active-control microscopy (SMACM) with photo-reactivable EYFP for imaging biophysical processes in live cells. Nat Methods. 5, 947-949 (2008).
  11. Shtengel, G., et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. P Natl Acad Sci USA. 106, 3125-3130 (2009).
  12. Huang, B., Wang, W., Bates, M., Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science. 319, 810-813 (2008).
  13. Dani, A., Huang, B., Bergan, J., Dulac, C., Zhuang, X. Super resolution imaging of chemical synapses in the brain. Neuron. 68, 843-856 (2010).
  14. Liu, J., et al. Talin determines the nanoscale architecture of focal adhesions. P Natl Acad Sci USA. 112 (35), E4864-E4873 (2015).
  15. Kanchanawong, P., et al. Nanoscale architecture of integrin-based cell adhesions. Nature. 468, 580-584 (2010).
  16. Wu, Y., Kanchanawong, P., Zaidel-Bar, R. Actin-delimited adhesion-independent clustering of e-cadherin forms the nanoscale building blocks of adherens junctions. Dev Cell. 32 (2), 139-154 (2015).
  17. Szymborska, A., et al. Nuclear Pore Scaffold Structure Analyzed by Super-Resolution Microscopy and Particle Averaging. Science. 341, 655-658 (2013).
  18. Lawo, S., Hasegan, M., Gupta, G. D., Pelletier, L. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat Cell Biol. 14, 1148-1158 (2012).
  19. Mennella, V., Agard, D. A., Huang, B., Pelletier, L. Amorphous no more: subdiffraction view of the pericentriolar material architecture. Trends Cell Biol. 24, 188-197 (2014).
  20. Mennella, V., et al. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat Cell Biology. 14, 1159-1168 (2012).
  21. Fletcher, D. A., Mullins, R. D. Cell mechanics and the cytoskeleton. Nature. 463, 485-492 (2010).
  22. Salbreux, G., Charras, G., Paluch, E. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol. 22, 536-545 (2012).
  23. Shtengel, G., et al. Imaging cellular ultrastructure by PALM, iPALM, and correlative iPALM-EM. Method Cell Biol. 123, 273-294 (2014).
  24. Juette, M. F., et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods. 5, 527-529 (2008).
  25. Lippincott-Schwartz, J., Patterson, G. H. Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol. 19, 555-565 (2009).
  26. Shannon, C. Communication in the presence of noise. Proc. IRE. 37, 10-21 (1949).
  27. Good, N. E., et al. Hydrogen ion buffers for biological research. 생화학. 5, 467-477 (1966).
  28. Aitken, C. E., Marshall, R. A., Puglisi, J. D. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J. 94, 1826-1835 (2008).
  29. Shin, W. D., Goldman, R. D., Swedlow, J. R., Spector, D. L., et al. . Live Cell Imaging: A Laboratory Manual. , (2010).
  30. Aquino, D., et al. Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nat Methods. 8, 353-359 (2011).
  31. Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M., Zhuang, X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods. 8, 1027-1036 (2011).
  32. Pertsinidis, A., Zhang, Y., Chu, S. Subnanometre single-molecule localization, registration and distance measurements. Nature. 466, 647-651 (2010).
  33. Baddeley, D., Cannell, M. B., Soeller, C. Visualization of Localization Microscopy Data. Microsc Microanal. 16, 64-72 (2010).
  34. El Beheiry, M., Dahan, M. ViSP: representing single-particle localizations in three dimensions. Nat Methods. 10, 689-690 (2013).
  35. Schnell, U., Dijk, F., Sjollema, K. A., Giepmans, B. N. Immunolabeling artifacts and the need for live-cell imaging. Nat Methods. 9, 152-158 (2012).
  36. Shroff, H., Galbraith, C. G., Galbraith, J. A., Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods. 5, 417-423 (2008).
  37. Yamashiro, S., et al. New single-molecule speckle microscopy reveals modification of the retrograde actin flow by focal adhesions at nanometer scales. Mol Biol Cell. 25, 1010-1024 (2014).
  38. Shroff, H., et al. Dual-color super resolution imaging of genetically expressed probes within individual adhesion complexes. P Natl Acad Sci USA. 104, 20308-20313 (2007).
  39. Chen, B. C., et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science. 346, (2014).
  40. Brown, T. A., et al. Super resolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol Cell Biol. 31, 4994-5010 (2011).
  41. Huang, F., et al. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat Methods. 10, 653-658 (2013).
  42. Daostorm, S. DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat methods. 8, 279 (2011).
  43. Zhu, L., Zhang, W., Elnatan, D., Huang, B. Faster STORM using compressed sensing. Nat Methods. 9, 721-723 (2012).
  44. Van Engelenburg, S. B., et al. Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits. Science. 343, 653-656 (2014).
  45. Vaughan, J. C., Jia, S., Zhuang, X. Ultrabright photoactivatable fluorophores created by reductive caging. Nat Methods. 9, 1181-1184 (2012).
check_url/kr/54774?article_type=t

Play Video

Cite This Article
Wang, Y., Kanchanawong, P. Three-dimensional Super Resolution Microscopy of F-actin Filaments by Interferometric PhotoActivated Localization Microscopy (iPALM). J. Vis. Exp. (118), e54774, doi:10.3791/54774 (2016).

View Video