Summary

DNA İçerik Ölçüm tarafından Memeli Çoğaltma Zamanlama genom Tayini

Published: January 19, 2017
doi:

Summary

We describe here a relatively fast and simple approach for mapping genome-wide mammalian replication timing, from cell isolation to the basic analysis of the sequencing results. A genomic map of a representative replication program will be provided following the protocol.

Abstract

genomun replikasyonu, DNA kopyalama doğruluğunu sağlayan bir yüksek ölçüde düzenlenmiş bir işlemde, hücre döngüsünün S fazında oluşur. Her genomik bölge çoğaltma birden kökenleri eşzamanlı aktivasyonu yoluyla S fazında belirgin bir anda çoğaltılır. çoğaltma (İş Tanımı) Zaman birçok genomik ve epigenetik özellikleri ile ilişkilidir ve mutasyon oranları ve kanser ile bağlantılıdır. Sağlıkta ve hastalıkta, çoğaltma programın tam genomik görünümü kavramak önemli bir gelecek hedefi ve mücadeledir.

, Memeli hücrelerinin genomu geniş Tanımı eşleştirmek için basit bir yaklaşım: Bu makalede ayrıntılı olarak (CNR-İş Tanımı burada denir) yöntemini "Çoğaltma genomik Zaman haritalama için S / G1 Kopya sayısı Oranı" açıklar. yöntem S fazı hücreleri ve G1 faz hücreleri arasındaki kopya sayısı farklılıklara dayanmaktadır. CNR-tor yöntemi 6 adımda gerçekleştirilir: propidyum iyodür (PI) hücre ve boyama hazırlanması 1.; 2. Sorting G1 ve sıralama floresan aktive hücre kullanılarak S fazı hücreleri (FACS); 3. DNA saflaştırılması; 4. Sonication; 5. Kütüphane hazırlık ve sıralama; ve 6. Biyoinformatik analizi. CNR-Şartname yöntemi ayrıntılı çoğaltma haritalarda sonuçlanan hızlı ve kolay bir yaklaşımdır.

Introduction

Memeli DNA replikasyonu, hücre döngüsü sırasında tam olarak bir kez her kromozomun tam çoğaltma sağlamak için sıkıca düzenlenir. Çoğaltma oldukça düzenlenmiş sıraya göre gerçekleşir – Birden fazla büyük genomik bölgeler (~ Mb) diğer genomik bölgelerde orta ya da geç S fazı (orta ve geç kopyalayan etki) daha sonra çoğaltmak ise 1 (erken etki kopyalayan) S fazına başında çoğaltırlar. Genomun 50%, kanser dönüşüm 5 içinde farklılaşması 3, 4 sırasında ve daha az bir ölçüde, dokular 2 arasındaki ToR'u bilgileri – genomunun en% 30 ise, tüm dokulardan (yapıcı Tanımı etki) aynı anda çoğaltır . Ayrıca, bazı genomik bölge senkronize olmayan bir 6, 7, 8, yani bir fark vardır çoğaltmaiki allel arasındaki Tanımında.

Tanımı transkripsiyon seviyeleri, GC içeriği, kromatin durum, genin yoğunluk, vb 1, 9 da dahil olmak üzere pek çok genomik ve Epigenomik özellikleri ile ilişkilidir. Tanımı mutasyon oranları ve tip 10, 11 ve bu nedenle şaşırtıcı olmayan ilişkili, çoğaltma programı pertürbasyonlar kanseri 12, 13 ile bağlantılıdır. Şartname ve kromatin yapısı arasındaki nedensel ilişki henüz anlaşılamamıştır. Açık kromatin erken çoğaltma kolaylaştırır mümkündür. Bununla birlikte, alternatif bir model, 14 kromatin çoğaltma sırasında bir araya getirilen ve farklı bir kromatin başlangıçta mevcut düzenleyiciler ve S fazında kurşun ucu erken ve geç replike bölgeleri 1 ambalajını diferansiyel düşündürmektedir </sup>. Son zamanlarda Tanımı genomik bölgelerden 11 oluşur mutasyon tipini etkileyerek GC içeriğine şekiller göstermiştir.

In situ hibridizasyon (FISH) floresan bağımsız lokuslar Tor ölçmek için ana yöntem. Tek FISH sinyallerini genel belirli bir alel 15, 16 çifti arasında bir yüzdesini sergiler S fazı hücrelerin yüzdesi sayarak basit gerçekleştirilir. Alternatif bir yöntem, S boyunca çoklu zaman noktaları DNA içeriğine göre olan hücreler, sıralama BrdU DNA etiketleme BrdU içeren DNA immüno-çökeltilmesinin ve qPCR 17, çökelen DNA bolluk kontrol darbe oluşur.

Genomik Tanımı eşleme iki yöntemle elde edilebilir. İlk yöntem, yukarıda tarif edilen BrdU-IP tabanlı yöntemin genomik versiyonu olduğu bir miktarının ölçümüHer fraksiyonda Çökelen DNA mikrodizilerinin melezleştirme yoluyla tüm genom ya da derin dizilemesi ile eş zamanlı olarak yapılır. İkinci yöntem, CNR-tor G1 hücrelerdeki DNA içeriği ile S fazı hücreleri ve normalize her genomik bölgenin kopya sayısını ölçülmesi esasına dayanır. Bu yöntemde, hücreler, replike olmayan (G1 fazı) ve replike (S fazı) grupları (Şekil 1) içine FACS ile sıralanır. G1 Hücreler tüm genomik bölgelerde aynı kopya sayısını ve böylece onların DNA içeriği aynı olmalıdır. Öte yandan, S DNA kopya sayısı Geç replike bölgeleri dolayısıyla DNA içeriği olacak hücrelerin çoğunda yapılmamış tekrarlanıp değil ise, erken replike bölgeler çok hücre replikasyonu yapılmış ve bu nedenle DNA içeriği iki olduğundan, Şartname bağlıdır G1 hücre edilene benzer. Bu nedenle DNA içeriği G1 oranı S Şartname göstergesidir. Her bir genomik bölge için DNA miktarı ile hibridizasyon yoluyla ölçülürmikroarrayler veya derin sıralama 2, 8 ile. CNR-Şartname yöntemin avantajları daha ayrıntılı olarak ele alınacaktır.

Şekil 2'de tarif edildiği gibi, kağıt genomik Tanımı eşleme CNR-tor yöntemi tarif etmektedir. Kağıt sonuçlarının temel analiz ve genomik Şartname haritalarının oluşturulması kadar hücrelerin toplanması kadar tüm sürecin ince ayrıntıları anlatılır. Bu yazıda anlatılan protokol başarıyla kültüründe yetişen çeşitli hücre tipleri üzerinde yapılmıştır. Bu protokolün gelecek iyileştirmeler in vivo ToR'un haritalama ve nadir hücre tiplerinde yol açabilir.

Protocol

Not: Şartname sadece büyüyor, eşitlenmemiş hücreler üzerinde ölçülebilir. Genellikle S fazında ~ 1 x 10 5 hücre neden olur 2 x 10 6 hızlı büyüyen hücreler, (oran sınırlayıcı adım) – prosedür en az 1 ile başlamalıdır. Iki ya da üç kez tekrarlanmış kullanılarak her bir deney için tavsiye edilir. CNR-ToR'un tüm süreci bir hafta içinde tamamlanabilir – iki gün bir veya iki gün sıralama için gerekli olan ve ek bir gün ilk veri analizi için gerekli olan, küt?…

Representative Results

Tipik Tanımı harita fare embriyonik fibroblastlar için Şekil 3 (MEF'ler) 'de gösterilmiştir. gösterir çünkü bu rakam analiz sürecini gösteren bireysel pencereler (adım 8.3) için normalize S / G1 oranı olan noktalar, yanı sıra kübik yumuşatma ve enterpolasyon (adım 8.5) sonucunda oluşan çizgidir. i) erken aynı anda (TO = sabit Tanımı bölgeler) çoğaltmak bir megabase sırasın…

Discussion

CNR-Tanımı (Rhind N. ve Gilbert DM 20 tarafından incelenmiştir) S FACS ve G1 aşamaları ile ayrılabilir bir ökaryotik proliferatif hücre popülasyonu ilke olarak gerçekleştirilebilir. Burada tarif edilen yöntem, insan ve fare gibi ~ 3 Gb bir genom boyutuna sahip memeli hücrelerine ayarlanmıştır. (Hücre hazırlama ve dizileme derinliğinde) CNR-tor protokol küçük değişiklikler ökaryotlarda için ayarlamak için, ihtiyaç vardır. bu hız sınırlayıcı bir adımdır çünkü…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Biz rakamları oluşturmada yardım için Oriya Vardi teşekkür ederiz. BS grubunda çalışma, İsrail Bilim Vakfı (hibe No 567/10) ve Grant (# 281306) Başlangıç ​​Avrupa Araştırma Konseyi tarafından desteklenmiştir.

Materials

PBS BI (Biological Industries) 02-023-1A
Trypsin-EDTA BI (Biological Industries) 03-052-1B
15ml conical tube Corning 430790
5ml Polystyrene round Bottom tube with cell strainer cap  BD-Falcon 352235
Ethanol Gadot 64-17-5
RNAse-A 10mg/ml Sigma R4875
Propidiom iodide 1mg/ml Sigma P4170
parafilm Parafilm PM-996
1.5ml DNA LoBind Eppendorf tubes  Eppendorf 22431021
BSA Sigma A7906
1.7ml MaxyClear tube  Axygen MCT-175-C
magnetic beads – Agencourt AMPure XP  Beckman Coulter A63881
Ultrasonicator Covaris M-series  -530092
50 µl microTUBE AFA Fiber Screw-Cap 6x16mm Covaris 520096
Qubit fluorometer Invitrogen
Qubit dsDNA High Sensitivity (HS) Assay Kit Invitrogen Q32854
Electrophoresis.2200 Tape station system Agilent D1000 ScreenTape
Seqeuncing – Illumina NextSeq system Illumina SY-415-1001
Dneasy kit for DNA purification Qiagen 69504
PureProteom Magnetic Stand Millipore LSKMAGS08
Anti-BrdU/FITC DAKO F7210
FACS sorter BD FACSARIA III
FACS software BD FACSDiva v 8.0.1

References

  1. Farkash-Amar, S., Simon, I. Genome-wide analysis of the replication program in mammals. Chromosome Res. 18 (1), 115-125 (2010).
  2. Yaffe, E., et al. Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet. 6 (7), e1001011 (2010).
  3. Hiratani, I., et al. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol. 6 (10), (2008).
  4. Rivera-Mulia, J. C., et al. Dynamic changes in replication timing and gene expression during lineage specification of human pluripotent stem cells. Genome Res. 25 (8), 1091-1103 (2015).
  5. Ryba, T., et al. Abnormal developmental control of replication-timing domains in pediatric acute lymphoblastic leukemia. Genome Res. 22 (10), 1833-1844 (2012).
  6. Farkash-Amar, S., et al. Global organization of replication time zones of the mouse genome. Genome Res. 18 (10), 1562-1570 (2008).
  7. Koren, A., McCarroll, S. A. Random replication of the inactive X chromosome. Genome Res. 24 (1), 64-69 (2014).
  8. Mukhopadhyay, R., et al. Allele-specific genome-wide profiling in human primary erythroblasts reveal replication program organization. PLoS Genet. 10 (5), e1004319 (2014).
  9. McNairn, A. J., Gilbert, D. M. Epigenomic replication: linking epigenetics to DNA replication. Bioessays. 25 (7), 647-656 (2003).
  10. Sima, J., Gilbert, D. M. Complex correlations: replication timing and mutational landscapes during cancer and genome evolution. Curr Opin Genet Dev. 25, 93-100 (2014).
  11. Kenigsberg, E., et al. The mutation spectrum in genomic late replication domains shapes mammalian GC content. Nucleic Acids Res. 44 (9), 4222-4232 (2016).
  12. Woo, Y. H., Li, W. H. DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes. Nat Commun. 3, 1004 (2012).
  13. Liu, L., De, S., Michor, F. DNA replication timing and higher-order nuclear organization determine single-nucleotide substitution patterns in cancer genomes. Nat Commun. 4, 1502 (2013).
  14. Goren, A., Cedar, H. Replicating by the clock. Nat Rev Mol Cell Biol. 4 (1), 25-32 (2003).
  15. Selig, S., Okumura, K., Ward, D. C., Cedar, H. Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J. 11 (3), 1217-1225 (1992).
  16. Smith, L., Thayer, M. Chromosome replicating timing combined with fluorescent in situ hybridization. J Vis Exp. (70), e4400 (2012).
  17. Simon, I., et al. Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature. 401 (6756), 929-932 (1999).
  18. Phi-Wilson, J. T., Recktenwald, D. J. Coating agents for cell recovery. Google Patents. , (1993).
  19. Koren, A., et al. Differential relationship of DNA replication timing to different forms of human mutation and variation. Am J Hum Genet. 91 (6), 1033-1040 (2012).
  20. Rhind, N., Gilbert, D. M. DNA replication timing. Cold Spring Harb Perspect Biol. 5 (8), a010132 (2013).
  21. Koren, A., et al. Genetic variation in human DNA replication timing. Cell. 159 (5), 1015-1026 (2014).
check_url/kr/55157?article_type=t

Play Video

Cite This Article
Yehuda, Y., Blumenfeld, B., Lehmann, D., Simon, I. Genome-wide Determination of Mammalian Replication Timing by DNA Content Measurement. J. Vis. Exp. (119), e55157, doi:10.3791/55157 (2017).

View Video