Summary

的发展<em> Metarhizium anisopliae</em>作为防腐剂:从隔离到现场表现

Published: July 30, 2017
doi:

Summary

在这里,我们报告了有效的杀丝粒菌知识开发中涉及到的不同阶段,包括分离,鉴定,筛选和选择“最适合”昆虫病原真菌( Metarhizium anisopliae )来控制农业中的害虫。

Abstract

与化学杀虫剂相比,开发商用防霉杀菌剂的主要问题是杀死速度。因此,选择快速,高毒力昆虫病原真菌的分离筛选是重要的步骤。昆虫病原真菌如Metarhizium,BeauveriaNomurea通过接触作用,比苏云金芽孢杆菌或核多角体病毒(NPV)更适合,必须被害虫摄入。在目前的工作中,我们使用土壤稀释和诱饵方法从感染的昆虫中分离出68株Metarhizium菌株。通过ITS1-5.8S-ITS2和26S rDNA区域的扩增和测序鉴定了分离株。基于针对棉铃实夜蛾三龄幼虫的昆虫生物测定中获得的中值致死浓度(LC 50 )和时间(LT 50 )选择最具毒性的Metarhizium anisopliae菌株通过使用稻作为底物的固相发酵(SSF)进行14天的选择菌株的大量生产孢子。使用0.1%吐温-80从孢子生物质中提取孢子,并制备不同的孢子制剂。通过随机区块设计进行了用于控制棉蚜棉铃虫侵染的配方的现场试验。用油和水性制剂(分别为78.0%和70.9%)获得的侵染控制水平优于用化学农药获得的63.4%。

Introduction

从在印度上世纪40年代引进有机氯农药,农药的使用增加了许多倍,1,与作物病虫害仍然花费数十亿卢比,每年2的农业生产产量损失的条款。广泛和不合理地使用合成农药是对环境和人类健康的持续威胁1 。不分青红皂白地使用农药会导致土壤中的残留物和天敌害虫的消耗。它也是改变有害生物种群遗传构成的强大选择压力,导致抗性发展1 。尽管绿色革命带来了巨大的好处,这种革命需要高投入,如肥料和农药,但害虫仍然是一个主要的生物限制。印度和全世界录得的年度作物损失的一般估计为120亿美元ef“> 2和2000亿美元3

当化学农药在用于防治害虫时具有不利影响,寻找生态健康,可靠,经济,可持续的替代方法成为当务之急。生物防治提供了合适的替代方案,包括使用寄生虫,捕食者和微生物病原体4 。例如,真菌感染各种各样的害虫,包括鳞翅目,鳞翅目,鞘翅目和dip子,经常导致天然流行病。此外,与其他细菌和病毒昆虫控制剂不同,昆虫致病真菌的作用方式是通过接触5 。这些真菌包含超过100属的异源组,其中不同昆虫中报告了大约750种。重要的真菌病原体是: Metarhizium sp。, Beauveria sp。, Nomuraea rileyiLecanicillium lecaniiHirsutella sp。,仅举几例6M. anisopliae (Metchnikoff)Sorokin是生物控制中第二大广泛应用的昆虫病原真菌。已知攻击200多种昆虫7

在这项研究中,涉及到使用绿僵一个mycopesticide的知识为基础的发展不同阶段呈现。这包括:1)确定有毒昆虫病原体的来源( 土壤或微生物昆虫),2)昆虫病原体鉴定和选择,3)在实验室生物测定和野外维持其毒性和有效性的策略4 )传染性繁殖体的成本有效的制剂,5)开发用于有毒制剂的独特的质量控制参数,以及6)生物勘探和增值。

Protocol

昆虫病原真菌的分离 土壤稀释法 收集来自不同作物田间的土壤样品和霉菌昆虫( 表1 )。使用土壤稀释电镀方法从土壤样品中分离昆虫病原真菌8 。 注意:本研究中从Pune(18°31'13''N; 73°51'24''E)和Buldhana(19°58'36''N 76°30'30''E )地区,马哈拉施特拉邦,印度。 称取10g每个土壤样品,并分别加?…

Representative Results

在调查期间, 绿僵菌,白僵菌 ,和野村的不同菌株通过各种分离方法(数据未示出) 如图6所示 ,分离14作为绿僵菌的菌株被发现是在控制棉铃虫 ,在脉冲6可怕的害虫,14更有效目的是进一步分离来自不同作物田和昆虫的Metarhizium菌株( 表1 )。通过文化和形态…

Discussion

在19世纪80年代,第一个尝试使用绿僵控制金龟子,Anisoplia austriaca和甜菜象鼻虫,Cleonis punctiventris 21。在该方案中,先决条件之一是从土壤中或从感染的昆虫中分离出毒性菌株。事实上,其它参数,诸如LC 50,LT 50和ST 50,显著到产品22,23的成本效益作出了贡献。为了优化孢子生产,孢?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者承认来自瑞士生物技术部印度 – 瑞士合作生物技术合作社(ISCB)计划的贡献,以及瑞士伯尔尼瑞士发展与合作署。公认的项目学员和工作人员参与发展杀丝胶药剂的贡献包括Vandana Ghormade,Pallavi Nahar,Priya Yadav,Shuklangi Kulkarni,Manisha Kapoor,Santosh Chavan,Ravindra Vidhate,Shamala Mane和Abhijeet Lande。 EKP和SGT分别感谢印度大学教育资助委员会和印度科学与工业研究理事会(CSIR)的研究奖学金。 MVD承认新德里工业和科学研究理事会对名誉科学计划的支持。作者非常感谢印度新德里生物技术系在ISCB和SBIRI项目下的财政支持。我们很感激评论者的投入。

Materials

Agar Hi-Media RM666 Reagent
Ammonium sulphate  Thomas Baker 11645 Reagent
DNA analyzer  Applied biosystem ABI prism 3730   Instrument
DNA islation kit Qiagen 69104 Reagent
Dodine Sigma 45466 Reagent
Gel extraction kit Qiagen 28604 Reagent
Glucose Hi-Media GRM077 Reagent
Knapsac sparyer Kaypee HY-16L (1004) Instrument
Peptone Hi-Media RM006-500G Reagent
Polypropylene vials  Laxbro SV-50 Plasticware
Potato dextrose agar (PDA)  Hi-Media M096-500G Reagent
Tween-80 SRL 28940 Reagent
Ultra low volume sparyer Matabi INSECDISK Instrument
Unicorn-bags  Unicorn UP-140024-SMB Autoclavalbe bag for SSF
Yeast extract Hi-Media RM027-500G Reagent
Chromas 2.1 software

References

  1. Aktar, M. W., Sengupta, D., Chowdhury, A. Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology. 2 (1), 1-12 (2009).
  2. Dhaliwal, G. S., Jindal, V., Mohindru, B. Crop losses due to insect pests: Global and Indian scenario. Indian J Entomol. 77 (2), 165-168 (2015).
  3. Popp, J., Peto, K., Nagy, J. Pesticide productivity and food security. A review. Agronomy for Sustainable Development. 33 (1), 243-255 (2015).
  4. van Lenteren, J. C., Manzaroli, G., Albajes, R., Gullino, M. L., van Lenteren, J. C., Elad, Y. Evaluation and use of predators and parasitoids for biological control of pests in greenhouses. Integrated pest and disease management in greenhouse crops. , 183-201 (1999).
  5. Charnley, A. K., Collins, S. A., Kubicek, C. P., Druzhinina, I. S. Entomopathogenic fungi and their role in pest control. The Mycota IV: Environmental and Microbial Relationships. , 159-187 (2007).
  6. Deshpande, M. V., MV, D. e. s. h. p. a. n. d. e., et al. Comparative evaluation of indigenous fungal isolates, Metarhizium anisopliae M34412, Beauveria bassiana B3301 and Nomuraea rileyi N812 for the control of Helicoverpa armigera (Hüb.) on pulses. Proceeding of the international workshop on entomopathogenic fungi – a valuable alternative to fight against insect pests. , 51-59 (2004).
  7. Roberts, D. W., Hajek, A. E., Leathan, G. F. Entomopathogenic fungi as bioinsecticides. Frontiers in industrial mycology. , 144-159 (1992).
  8. Goettel, M., Inglis, G. D., Lacey, L. A. . Fungi: Hyphomycetes. Manual of techniques in insect pathology. , 213-245 (1996).
  9. Keller, S., Kessler, P., Schweizer, C. Distribution of insect pathogenic soil fungi in Switzerland with special reference to Beauveria brongniartii and Metharhizium anisopliae. BioControl. 48 (3), 307-319 (2003).
  10. White, T. J., Bruns, T., Lee, S., Taylor, J., Innis, M. A. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR-Protocols: A guide to methods and applications. , 315-322 (1990).
  11. Ignoffo, C. M., Futtler, B., Marston, N. L., Hostetter, D. L., Dickerson, W. A. Seasonal incidence of the entomopathogenic fungus Spicaria rileyi associated with noctuid pests of soybeans. J Invertebr Pathol. 25 (1), 135-137 (1975).
  12. Abbott, W. S. A method for computing the effectiveness of an insecticide. J Econ Entomol. 18 (2), 265-267 (1925).
  13. Nahar, P. . Development of biocontrol agents for the control of pests in agriculture using chitin metabolism as target. , 137 (2004).
  14. Kulkarni, S. A., et al. Comparison of Metarhizium isolates for biocontrol of Helicoverpa armigera (Lepidoptera: Noctuidae) in chickpea. Biocontrol Sci Tech. 18 (8), 809-828 (2008).
  15. Jeffs, L. B., Khachatourians, G. G. Estimation of spore hydrophobicity for members of the genera Beauveria, Metarhizium, and Tolypocladium by salt-mediated aggregation and sedimentation. Can J Microbiol. 43 (1), 23-28 (1997).
  16. Henderson, C. F., Tilton, E. W. Tests with acaricides against the brow wheat mite. J Econ Entomol. 48 (2), 157-161 (1955).
  17. Hassani, M. . Development and proving of biocontrol methods based on Bacillus thuringiensis and entamopathogenic fungi against the cotton pests Spodoptera littoralis, Helicoverpa armigera (Lepidoptera: Noctuidae) and Aphis gossypii (Homoptera: Aphididae). , (2000).
  18. Enkerli, J., Ghormade, V., Oulevey, C., Widmer, F. PCR-RFLP analysis of chitinase genes enable efficient genotyping of Metarhizium anisopliae var. anisopliae. J Invert Pathol. 102 (2), 185-188 (2009).
  19. Bidochka, M. J., Melzer, M. J. Genetic polymorphism in three subtilisin-like protease isoforms (Pr1A, Pr1B and Pr1C) from Metarhizium strains. Can. J. Microbiol. 46 (12), 1138-1144 (2000).
  20. McCoy, C. W., Samson, R. A., Boucias, D. G., Ignoffo, C. M., Mandava, N. B. Entomogenous fungi. Handbook of natural pesticides, Microbial insecticides, Part A. Entomogenous protozoa and fungi. , 151-236 (1988).
  21. Nahar, P. B., et al. Effect of repeated in vitro sub-culturing on the virulence of Metarhizium anisopliae against Helicoverpa armigera (Lepidoptera Noctuidae). Biocontrol Sci Tech. 18 (4), 337-355 (2008).
  22. Kapoor, M., Deshpande, M. V. Development of mycoinsecticide for the control of insect pests: Issues and challenges in transfer of technology from laboratory to field. Kavaka. 40, 45-56 (2013).
  23. Deshpande, M. V. Mycopesticide Production by Fermentation: Potential and Challenges. Crit Rev Microbiol. 25 (3), 229-243 (1999).
check_url/kr/55272?article_type=t

Play Video

Cite This Article
Tupe, S. G., Pathan, E. K., Deshpande, M. V. Development of Metarhizium anisopliae as a Mycoinsecticide: From Isolation to Field Performance. J. Vis. Exp. (125), e55272, doi:10.3791/55272 (2017).

View Video