Summary

分离的原发性上皮细胞从附睾的全细胞贴片钳记录

Published: August 03, 2017
doi:

Summary

我们提出了一种协议,结合细胞分离和全细胞膜片钳记录来测量主要解离的上皮细胞从大鼠cauda附睾的电性质。该方案允许研究原发性附睾上皮细胞的功能特性,以进一步阐明附睾的生理作用。

Abstract

附睾是精子成熟和生殖健康的重要器官。附睾上皮由复杂连接的细胞类型组成,不仅在分子和形态特征上而且在生理特性上都是不同的。这些差异反映了其各种功能,它们共同为睾丸内附睾精子发育建立必要的微环境。了解附睾上皮细胞的生物物理特性对于在生理和病理生理条件下显示其在精子和生殖健康中的功能至关重要。虽然其功能特性尚未完全阐明,附睾上皮细胞可以使用膜片钳技术进行研究,膜技术是测量单细胞的细胞事件和膜性质的工具。在这里,我们描述了细胞分离和全细胞膜片钳记录方法确定主要解离的上皮细胞从大鼠cauda附睾的电性质。

Introduction

男性生殖道的附睾是一层衬有一层马赛克上皮细胞的器官。如在其他上皮组织中,附睾上皮的各种细胞类型,包括主要细胞,透明细胞,基底细胞和来自免疫和淋巴系统的细胞,以协调的方式起作用,作为小管前线的屏障,并且作为支撑为精子成熟和生理学1,2,3的细胞。因此,这些上皮细胞在生殖健康中起重要作用。

上皮细胞通常被视为不可兴奋细胞不能产生响应全或无动作电位去极化到刺激,由于缺乏电压门控Na +或Ca 2+通道4,5。然而,上皮细胞表达uni一组离子通道和转运蛋白调节其特殊的生理作用,如分泌和营养物质运输6 。因此,不同的上皮细胞具有特征的电性质。例如,主细胞表达的CFTR用于流体和氯化运输和表达对钙的重吸收的TRPV6,而明确细胞表达质子泵V-ATP酶对于管腔酸化1,7,8,9。调节附睾上皮细胞的生理特征的一些转运蛋白和离子通道已被报道,但附睾上皮细胞的功能特性在很大程度上尚未了解10,11,12,13。

瓦油细胞膜片钳记录是用于检查可兴奋细胞和不可兴奋细胞的固有特性的已知技术,特别有助于研究异源细胞样品中主要解离的细胞的功能;电压钳用于测量无源膜特性和单电池14,15的离子电流。被动膜性质包括输入电阻和电容。前一个参数表示内在膜电导,而后者则表示细胞膜的表面积(磷脂双层,其中离子通道和转运蛋白位于其中,其作为分离细胞外和细胞内介质的薄绝缘体)。膜电容与细胞膜的表面积成正比。与输入电阻反映的膜电阻一起,膜时间常数w可以确定细胞膜电位对离子通道电流的流动有多快。在这点上,由电流响应特性从一系列施加于细胞电压的步骤相结合,生物物理动力学和细胞的性质被确定15,16,17,18。

在本文中,我们描述了使用全细胞膜片钳从大鼠cauda附睾分离上皮细胞的程序和用于测量解离的细胞混合物中不同细胞类型的膜性质的步骤。我们显示附睾主细胞表现出不同的膜电生理特性,并且可以容易地从其他细胞类型鉴定电导。

Protocol

所有动物实验均按照符合当地和国际要求的上海科技大学机构动物护理与使用委员会的指导方针进行。 实验动物使用8-12周龄的成年雄性Sprague-Dawley大鼠(约300-450g)。在大鼠的这个年龄,精子已经到达了马尾附睾。 2.大鼠Cauda上皮细胞的分离注意:除非另有说明,以下步骤在非无菌条件下进行。 准备解剖仪?…

Representative Results

对于上皮细胞从大鼠马尾附睾隔离所描述的酶消化过程是从我们以前的研究9,12一个经修改协议。该方法产生具有超过90%存活力和无表面起泡或肿胀细胞体积的单细胞混合物。异质细胞混合物主要由主要细胞,透明细胞和基底细胞组成,如前所述1 。在该方案中,可以通过在培养皿上培养主要解离细胞过夜以获…

Discussion

在该方案中,大鼠卡达附睾的酶分散始终产生健康的上皮细胞。用于膜片钳实验的附睾上皮细胞的质量取决于方案中的几个关键步骤。例如,在低离心力(30×g)下离心细胞混合物对于去除精子和附睾腔内含量是重要的;附睾上皮细胞在细胞培养中精子存在时变得不健康。另外,在培养皿上培养解离的细胞混合物数小时是去除成纤维细胞和平滑肌细胞的重要步骤;非上皮细胞在培养皿上粘附更快,因…

Disclosures

The authors have nothing to disclose.

Acknowledgements

感谢Christopher Antos博士对文本的有用评论。这项工作得到了上海科技大学授予温妮·舒姆的启动资金和中国国家自然科学基金资助(NNSFC第31471370号)的资助。

Materials

Instrument of AXON system
Computer controlled amplifier Molecular Devices – Axon Multiclamp 700B patch-clamp amplifier
Digital Acquisition system Molecular Devices – Axon Digidata 1550 converter
Microscope Olympus BX-61WI
Micromanipulator Sutter Instruments MPC-325
Recording chamber and in-line Heater Warner Instruments TC-324C
Instrument of HEKA system
Patch Clamp amplifier Harvard Bioscience – HEKA EPC-10 USB double
Microscope Olympus IX73
Micromanipulator Sutter Instruments MPC-325
Recording chamber and in-line Heater Warner Instruments TC-324C
Other Instrument
Micropipette Puller Sutter Instrument  P-1000
Recording Chamber Warner Instruments RC-26G or homemade chamber
Borosilicate capillary glass with filament Sutter Instrument / Harvard Apparatus BF150-86-10
Vibration isolation table TMC  63544
Digital Camare HAMAMASTU ORCA-Flash4.0 V2 C11440-22CU
Reagents for isolation
RPMI 1640 medium Gibco 22400089
Penicillin/Streptomycin Gibca 15140112
IMDM ATCC  30-2005 
IMDM Gibco C12440500BT
Collagenase I Sigma C0130
Collagenase II Sigma C6885
5-α-dihydrotestosterone Medchemexpress HY-A0120
Fetal bovine serum capricorn FBS-12A
Micropipette internal solutions (K+-based solution) (pH 7.2, 280-295 mOsm)
KCl, 35mM Sigma/various V900068
MgCl2 · 6H2O, 2mM Sigma/various M2393
EGTA, 0.1mM Sigma/various E4378
HEPES, 10mM Sigma/various V900477
K-gluconate, 100mM Sigma/various P-1847
Mg-ATP, 3mM Sigma/Various A9187
The standard external recording physiological salt solution (PSS) (pH 7.4, 300-310 mOsm)
NaCl, 140mM Sigma/various V900058
KCl, 4.7mM Sigma/various V900068
CaCl2, 2.5mM Sigma/various V900266
MgCl2 · 6H2O, 1.2mM Sigma/various M2393
NaH2PO4, 1.2mM Sigma/various V900060
HEPES, 10mM Sigma/various V900477
Glucose, 10mM Sigma/various V900392
For pH adjustment
NaOH Sigma/various V900797 Purity >=97%
KOH Sigma/various 60371 Purity >=99.99%

References

  1. Shum, W. W. C., Ruan, Y. C., Da Silva, N., Breton, S. Establishment of Cell-Cell Cross Talk in the Epididymis: Control of Luminal Acidification. J Androl. 32 (6), 576-586 (2011).
  2. Robaire, B., Hinton, B. T., Plant, T. M., Zeleznik, A. J. . Knobil and Neill’s Physiology of Reproduction. , 691-771 (2015).
  3. Da Silva, N., et al. A dense network of dendritic cells populates the murine epididymis. Reproduction. 141 (5), 653-663 (2011).
  4. Kolb, H. A. . Special Issue on Ionic Channels II. , 51-91 (1990).
  5. Clapham, D. E. Calcium Signaling. Cell. 80 (2), 259-268 (1995).
  6. Frizzell, R. A., Hanrahan, J. W. Physiology of Epithelial Chloride and Fluid Secretion. Cold Spr Harb Pers Med. 2 (6), (2012).
  7. Wong, P. Y. D. CFTR gene and male fertility. Mol Hum Reprod. 4 (2), 107-110 (1998).
  8. Shum, W. W. C., et al. Transepithelial Projections from Basal Cells Are Luminal Sensors in Pseudostratified Epithelia. Cell. 135 (6), 1108-1117 (2008).
  9. Gao, D. Y., et al. Coupling of TRPV6 and TMEM16A in epithelial principal cells of the rat epididymis. J Gen Physiol. 148 (2), 161-182 (2016).
  10. Huang, S. J., et al. Electrophysiological Studies of Anion Secretion in Cultured Human Epididymal Cells. J Physiol. 455, 455-469 (1992).
  11. Chan, H. C., Fu, W. O., Chung, Y. W., Chan, P. S. F., Wong, P. Y. D. An Atp-Activated Cation Conductance in Human Epididymal Cells. Biol Repro. 52 (3), 645-652 (1995).
  12. Cheung, K. H., et al. Cell-cell interaction underlies formation of fluid in the male reproductive tract of the rat. J Gen Physiol. 125 (5), 443-454 (2005).
  13. Pastor-Soler, N., Pietrement, C., Breton, S. Role of acid/base transporters in the male reproductive tract and potential consequences of their malfunction. Physiol. 20, 417-428 (2005).
  14. Evans, A. M., Osipenko, O. N., Haworth, S. G., Gurney, A. M. Resting potentials and potassium currents during development of pulmonary artery smooth muscle cells. Ame J Physiol-Heart Circ Physiol. 275 (3), 887-899 (1998).
  15. Golowasch, J., et al. Membrane Capacitance Measurements Revisited: Dependence of Capacitance Value on Measurement Method in Nonisopotential Neurons. J Neurophysiol. 102 (4), 2161-2175 (2009).
  16. Cole, K. S. . Membranes, Ions and Impulses. A Chapter of Classical Biophysics. , (1968).
  17. Lo, C. M., Keese, C. R., Giaever, I. Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing. Biophys J. 69, 2800-2807 (1995).
  18. Solsona, C., Innocenti, B., Fernandez, J. M. Regulation of exocytotic fusion by cell inflation. Biophys J. 74 (2), 1061-1073 (1998).
  19. Robinson, D. W., Cameron, W. E. Time-dependent changes in input resistance of rat hypoglossal motoneurons associated with whole-cell recording. J Neurophysiol. 83 (5), 3160-3164 (2000).
  20. Sontheimer, H., Boulton, A. A., Baker, G. B., Walz, W. . Neuro Methods: Patch-Clamp Applications and Protocols. , (1995).
  21. Cheung, Y. M., Hwang, J. C., Wong, P. Y. Epithelial membrane potentials of the epididymis in rats [proceedings]. J Physiol. 263 (2), 280 (1976).
  22. Lybaert, P., et al. KATP channel subunits are expressed in the epididymal epithelium in several mammalian species. Biol Reprod. 79 (2), 253-261 (2008).

Play Video

Cite This Article
Zhang, B. L., Gao, D. Y., Zhang, X. X., Shi, S., Shum, W. Whole-cell Patch-clamp Recordings of Isolated Primary Epithelial Cells from the Epididymis. J. Vis. Exp. (126), e55700, doi:10.3791/55700 (2017).

View Video