Summary

3D生物反应器培养大规模制备滑液间充质干细胞来源外泌体

Published: July 26, 2022
doi:

Summary

在这里,我们提出了一种使用3D生物反应器从滑液间充质干细胞产生大量GMP级外泌体的方案。

Abstract

间充质干细胞(MSCs)分泌的外泌体已被建议作为软骨损伤和骨关节炎治疗的有希望的候选者。临床应用的外泌体需要大规模生产。为此,在微载体珠上生长人滑液MSC(hSF-MSCs),然后在动态三维(3D)培养系统中培养。通过利用3D动态培养,该方案成功地从SF-MSC培养上清液中获得了大规模的外泌体。通过超速离心收获外泌体,并通过透射电子显微镜、纳米颗粒透射测定和蛋白质印迹法进行验证。此外,还检测了外泌体的微生物安全性。外泌体检测结果表明,该方法可以产生大量良好生产规范(GMP)级外泌体。这些外泌体可用于外泌体生物学研究和临床骨关节炎治疗。

Introduction

由关节软骨和潜在骨分解引起的骨关节炎(OA)仍然是导致残疾的严峻挑战12。没有血液和神经供应,软骨一旦受伤,自愈能力极小34。在过去的几十年中,基于自体软骨细胞植入(ACI)的疗法在OA治疗中取得了一些进展5。对于软骨细胞的分离和扩增,必须从OA关节的非承重区域收集小软骨,从而导致软骨损伤。此外,该程序将需要第二次手术来植入扩增的软骨细胞6。因此,无软骨损伤的OA治疗的一步疗法正在广泛探索中。

间充质干细胞(MSCs)被认为是OA治疗的有希望的替代品78。MSCs起源于多个组织,可以在特异性刺激下分化成软骨细胞。重要的是,间充质干细胞可以通过抗炎 调节 免疫反应9。因此,间充质干细胞通过修复软骨缺陷和调节免疫反应,特别是在炎症环境中,在OA治疗中具有显着优势。对于OA治疗,滑液MSCs(SF-MSCs)因其比其他MSC来源更强的软骨细胞分化能力而最近引起了广泛关注1011。值得注意的是,在骨科诊所,从关节腔中提取炎性SF是缓解OA患者疼痛症状的常规疗法。提取的炎性SF通常作为医疗废物处理。患者和医生都准备考虑从炎症性SF中分离的自体MSCs作为OA治疗,几乎没有伦理冲突。然而,SF-MSC治疗由于致瘤风险,长期储存和远距离运输障碍而受到损害。

由许多细胞类型(包括MSC)分泌的外泌体携带大部分亲本细胞生物信息。它已被深入研究为无细胞疗法1213。根据临床试验政府(ClinicalTrials.gov)网站上提供的最新资源,在癌症,高血压和神经退行性疾病的研究领域启动并进行了更广泛的外泌体临床研究。SF-MSC外泌体治疗可能是一项令人兴奋和具有挑战性的应对OA的试验。良好生产规范(GMP)级和大规模外泌体生产对于临床转化至关重要。基于二维(2D)细胞培养的小规模外泌体分离已被广泛使用。然而,大规模外泌体生产策略需要优化。本研究开发了一种基于无异种条件下大量SF-MSC培养的大规模外泌体制造方法。从细胞培养上清液超速离心后,验证了外泌体的安全性和功能。

Protocol

本研究获得深圳市第二人民医院人类伦理委员会批准。从hSF-MSCs体外方案分离的外泌体示意图如图1所示。 1. 人类SF-MSCs培养与鉴定 使用注射器和针头从临床OA患者中收获20 mL SF。对OA患者的膝关节进行消毒。用7#针从髌骨外股四头肌股四头肌肌腱穿刺入关节腔。 提取 10 mL 关节液。用输血棒覆盖穿刺部位并按压5分钟…

Representative Results

流式细胞术用于鉴定SF-MSC的表面标志物,根据国际细胞治疗学会推荐的定义人类MSC的最低标准14,15。流式细胞术分析表明,本研究培养的SF-MSCs符合MSCs的鉴定标准。CD34、CD45和HLA-DR呈阴性(低于3%),CD73、CD90和CD105呈阳性(95%以上)(图2)。 在倒置显微镜下,注意到SF-MSCs在微载体上增殖(图3A…

Discussion

间充质干细胞因其自我更新、分化为具有特殊功能的组织细胞和旁分泌效应而广泛应用于再生医学1617。值得注意的是,外泌体施加的旁分泌效应引起了人们的广泛关注18。外泌体携带MSCs的生物信息,发挥其生物学功能,克服MSC储存和运输麻烦等缺点。因此,来源于间充质干细胞的外泌体已被用于治疗干预,这在OA治疗中引起了最多?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

国家自然科学基金(第81972116、第81972085、第81772394号);广东省自然科学基金重点项目(No.2018B0303110003);广东国际合作项目(No.2021A0505030011);深圳市科技项目(编号)GJHZ20200731095606019,编号JCYJ20170817172023838,编号JCYJ20170306092215436,编号JCYJ20170413161649437);中国博士后科学基金(No.2020M682907);广东省基础与应用基础研究基金(No.2021A1515010985);深圳市三明医药项目(SZSM201612079);广东省高水平医院建设专项资金。

Materials

BCA assay kit ThermoFisher 23227 Protein concentration assay
Blood agar plate Nanjing Yiji Biochemical Technology Co. , Ltd. P0903 Bacteria culture
CD105 antibody Elabscience E-AB-F1243C Flow cytometry
CD34 antibody Elabscience E-AB-F1143C Flow cytometry
CD45 antibody BD Bioscience 555483 Flow cytometry
CD63 antibody Abclonal  A5271 Western blotting
CD73 antibody Elabscience E-AB-F1242C Flow cytometry
CD81 antibody ABclonal  A5270 Western blotting
CD9 antibody Abclonal  A1703 Western blotting
CD90 antibody Elabscience E-AB-F1167C Flow cytometry
Centrifuge Eppendorf Centrifuge 5810R
CO2 incubator Thermo Cell culture
Confocal laser scanning fluorescence microscopy ZEISS LSM 800
Cytodex GE Healthcare Microcarrier
Dil ThermoFisher D1556 Exosome label
EZ-PCR Mycoplasma detection kit BI 20-700-20 Mycoplasma detection
Flowcytometry Beckman MSC identification
Gene Pulser II System Bio-Rad Laboratories 1652660 Gene transfection
GraphPad Prism 8.0.2 GraphPad Software, Inc. Version 8.0.2
HLA-DR antibody Elabscience E-AB-F1111C Flow cytometry
Lowenstein-Jensen culture medium Nanjing Yiji Biochemical Technology Co. , Ltd. T0573 Mycobacterium tuberculosis culture
MesenGro StemRD MGro-500 MSC culture
Nanosight NS300 Malvern Nanosight NS300 Nanoparticle tracking analysis
NTA 2.3 software Malvern Data analysis
Odyssey FC Gene Company Limited Fluorescent western blotting
OptiPrep electroporation buffer Sigma D3911 Gene transfection
Protease inhibitors cocktail Sigma P8340 Proteinase inhibitor
RNase A Qiagen 158924 Removal of RNA
Sabouraud agar plate Nanjing Yiji Biochemical Technology Co., Ltd. P0919 Fungi culture
TEM JEM-1200EX
The Rotary Cell Culture System (RCCS) Synthecon RCCS-4HD 3D culture
Ultracentrifuge Beckman Optima XPN-100 Exosome centrifuge

References

  1. Cross, M., et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Annals of the Rheumatic Diseases. 73 (7), 1323-1330 (2014).
  2. Loeser, R. F., Goldring, S. R., Scanzello, C. R., Goldring, M. B. Osteoarthritis: a disease of the joint as an organ. Arthritis & Rheumatology. 64 (6), 1697-1707 (2012).
  3. Huey, D. J., Hu, J. C., Athanasiou, K. A. Unlike bone, cartilage regeneration remains elusive. Science. 338 (6109), 917-921 (2012).
  4. Lu, J., et al. Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regeneration. Theranostics. 8 (18), 5039-5058 (2018).
  5. Ogura, T., Bryant, T., Merkely, G., Mosier, B. A., Minas, T. Survival analysis of revision autologous chondrocyte implantation for failed ACI. American Journal of Sports Medicine. 47 (13), 3212-3220 (2019).
  6. Welch, T., Mandelbaum, B., Tom, M. Autologous chondrocyte implantation: past, present, and future. Sports Medicine and Arthroscopy Review. 24 (2), 85-91 (2016).
  7. McGonagle, D., Baboolal, T. G., Jones, E. Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis. Nature Reviews Rheumatology. 13 (12), 719-730 (2017).
  8. Jo, C. H., et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 32 (5), 1254-1266 (2014).
  9. Pers, Y. M., Ruiz, M., Noël, D., Jorgensen, C. Mesenchymal stem cells for the management of inflammation in osteoarthritis: state of the art and perspectives. Osteoarthritis Cartilage. 23 (11), 2027-2035 (2015).
  10. Neybecker, P., et al. In vitro and in vivo potentialities for cartilage repair from human advanced knee osteoarthritis synovial fluid-derived mesenchymal stem cells. Stem Cell Research & Therapy. 9 (1), 329 (2018).
  11. Jia, Z., et al. Magnetic-activated cell sorting strategies to isolate and purify synovial fluid-derived mesenchymal stem cells from a rabbit model. Journal of Visualized Experiments: JoVE. (138), (2018).
  12. Phinney, D. G., Pittenger, M. F. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 35 (4), 851-858 (2017).
  13. Phan, J., et al. Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy. Journal of Extracellular Vesicles. 7 (1), 1522236 (2018).
  14. Dominici, M., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 8 (4), 315-317 (2006).
  15. Lv, F. -. J., et al. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells. 32 (6), 1408-1419 (2014).
  16. Samsonraj, R. M., et al. Concise review: Multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Translational Medicine. 6 (12), 2173-2185 (2017).
  17. Han, Y., et al. Mesenchymal stem cells for regenerative medicine. Cells. 8 (8), (2019).
  18. Zhang, G., et al. Exosomes derived from human neural stem cells stimulated by interferon gamma improve therapeutic ability in ischemic stroke model. Journal of Advanced Research. 24, 435-445 (2020).
  19. Zhou, P., et al. Migration ability and Toll-like receptor expression of human mesenchymal stem cells improves significantly after three-dimensional culture. Biochemical and Biophysical Research Communications. 491 (2), 323-328 (2017).
  20. Cheng, N. C., Wang, S., Young, T. H. The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials. 33 (6), 1748-1758 (2012).
  21. Guo, L., Zhou, Y., Wang, S., Wu, Y. Epigenetic changes of mesenchymal stem cells in three-dimensional (3D) spheroids. Journal of Cellular and Molecular Medicine. 18 (10), 2009-2019 (2014).
  22. Zhang, Y., et al. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochemistry International. 111, 69-81 (2017).
  23. Cao, J., et al. Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury. Stem Cell Research & Therapy. 11 (1), 206 (2020).
check_url/kr/62221?article_type=t

Play Video

Cite This Article
Duan, L., Li, X., Xu, X., Xu, L., Wang, D., Ouyang, K., Liang, Y. Large-Scale Preparation of Synovial Fluid Mesenchymal Stem Cell-Derived Exosomes by 3D Bioreactor Culture. J. Vis. Exp. (185), e62221, doi:10.3791/62221 (2022).

View Video