Summary

小鼠肝细胞类器官的建立与遗传操作

Published: February 12, 2022
doi:

Summary

从小鼠肝细胞建立了长期 的体外 3D类器官培养系统。这些类器官可以通过shRNA/异位构建的慢病毒感染,siRNA转染和CRISPR-Cas9工程进行遗传和遗传操纵。

Abstract

肝脏是哺乳动物最大的器官。它在葡萄糖储存,蛋白质分泌,代谢和解毒中起重要作用。作为大多数肝功能的执行者,原代肝细胞的增殖能力有限。这就需要建立 离体 肝细胞扩增模型,用于肝脏生理和病理研究。在这里,我们通过两步胶原酶灌注分离小鼠肝细胞,并建立了3D类器官培养物作为”迷你肝脏”,以概括细胞 – 细胞相互作用和物理功能。类器官由异质细胞群组成,包括祖细胞和成熟肝细胞。我们详细介绍了分离和培养小鼠肝细胞或胎儿肝细胞在2-3周内形成类器官的过程,并展示了如何通过机械上下移液来通过它们。此外,我们还将介绍如何将类器官消化成单细胞,用于shRNA/异位构建的慢病毒感染,siRNA转染和CRISPR-Cas9工程。类器官可用于药物筛选,疾病建模和基础肝脏研究,通过模拟肝脏生物学和病理生物学。

Introduction

类器官是自组织的三维(3D) 体外 簇,包括自我更新的干细胞和多系分化细胞12。许多器官的类器官已经通过明确定义的利基因素从多能或成体干细胞中建立,包括肠道,大脑,结肠,肾脏,肝脏,胰腺,甲状腺,胃,皮肤和肺34567.类器官通过模仿发育(源自胚胎或诱导多能干细胞,PSC)或稳态/再生进展(源自成体干细胞,ASCs)来概括物理细胞功能,这为疾病研究和治疗开辟了新的途径89

作为哺乳动物最大的器官,肝脏主要负责储存,代谢和解毒。两种上皮细胞类型,肝细胞和胆管细胞,构建肝小叶的基本单位。肝细胞负责70-80%的肝功能10。虽然肝脏具有显着的再生能力,但在传统的单层培养过程中,肝细胞特征的快速丧失发生在失调的细胞极化和去分化,这增加了研究人员和临床医生在培养皿中建立”间隙桥接”肝脏模型的需求。然而,直到最近,来自原代肝细胞的 离体 扩增模型尚未得到很好的建立1112131415。肝脏类器官可以从胚胎/诱导多能干细胞、成纤维细胞转化为肝细胞样细胞和组织衍生细胞中建立。肝脏类器官的发展促进了体外模型在药物筛选和肝毒性测定中的应用1617

在这里,我们描述了从小鼠原发性肝细胞建立肝脏类器官的详细方案。通过使用该协议,我们建立了具有两种胶原酶灌注的肝细胞类器官的 体外 培养系统。这些类器官可以长期扩增数月。它们的生理功能与肝细胞高度一致。此外,我们还详细介绍了如何使用类器官进行遗传操作,例如慢病毒感染,siRNA转导和CRISPR-Cas9工程。肝细胞类器官的繁殖揭示了使用类器官来理解肝脏生物学并开发个性化和转化医学方法的可能性。

Protocol

所有小鼠实验均经山东大学基础医学院动物护理与使用委员会批准,并根据内政部指南和规定(No.ECSBMSSDU2019-2-079)。 注意:该方案主要用于从分离的原代肝细胞中培养3D类器官。 1. 建立小鼠肝细胞类器官培养 注意:细胞外基质(如基质胶或BME)用作培养类器官的基底基质。将细胞外基质储存在-20°C,并在4°C或冰上预解冻。在实验过?…

Representative Results

来自女性Alb-Cre的肝细胞类器官;在播种后五天观察Rosa26-GFP小鼠(8周)(图1A)。类器官随着Ki67阳性染色而增殖(图1B)。通过qRT-PCR和蛋白质印迹检查通过siRNA转染或慢病毒感染在肝细胞类器官中代表性基因的干扰表达。结果如图 2A 和 2B所示。 图2C 显示了用RSL-3和CRISPR / Cas9基因组文库筛选治疗14?…

Discussion

长期培养成熟肝细胞的能力是研究肝脏基础科学,药物毒理学和嗜肝性宿主微生物学感染(如疟疾和肝炎病毒)的基础。通过明确定义的生态位,这里的方案为肝细胞建立了一个培养系统。该协议驱动成熟肝细胞在3D培养物中扩增,具有异质性,概括了细胞 – 细胞相互作用,大多数肝细胞功能和遗传修饰,允许设计基因功能研究和新的治疗途径进行再生治疗。

高质量的肝细?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢Hans Clevers教授慷慨地提供了细胞系来生产重组R-spondin1。这项工作得到了中国国家重点研发计划(2019YFA0111400)、国家自然科学基金(31970779)和山东大学青年交叉学科创新研究组(2020QNQT003)对H.H.的资助。

Materials

Perfusion Buffer
EGTA Sangon Bitech A600077-0100 3.50 g/L
Glucose Sangon Bitech A100188-0500 9.00 g/L
KCl Sangon Bitech A100395-0500 4.00 g/L
Na2HPO4·12H2O Sangon Bitech A501727-0500 1.51 g/L
NaCl Sangon Bitech A501218-0001 80.0 g/L
NaH2PO4·2H2O Sangon Bitech A610404-0500 0.78 g/L
NaHCO3 Sangon Bitech A500873-0500 3.50 g/L
Phenol Red Sangon Bitech A100882-0025 0.06 g/L
Digestion Buffer
CaCl2 Sangon Bitech A501330-0005 0.50 M
Collagenase IV Sigma C1639 0.10 mg/mL
HEPES Sangon Bitech C621110-0010 23.80 g/L
KCl Sangon Bitech A100395-0500 4.00 g/L
Na2HPO4·12H2O Sangon Bitech A501727-0500 1.51 g/L
NaCl Sangon Bitech A501218-0001 80.0 g/L
NaH2PO4·2H2O Sangon Bitech A610404-0500 0.78 g/L
NaHCO3 Sangon Bitech A500873-0500 3.50 g/L
Tip-wash Buffer
Fetal Bovine Serum Gibco 10091148 stored at 4 °C
DPBS Gibco C14190500BT0 stored at 4 °C
Wash Medium
Advanced DMEM/F12 Invitrogen 12634-010 stored at 4 °C
GlutaMAX Gibco 35050-061 100 X
HEPES Gibco 15630-080 100 X
Penicillin/streptomycin Sangon Bitech  A600135-0025 100 X
Culture Medium
A83-01 Tocris 2939 Stock concentration 500 µM, final
concentration 2 µM
Advanced DMEM/F12 Invitrogen 12634-010 stored at 4 °C
B-27 supplement 50x, minus vitamin A Gibco 1704-044 50 X
Chir 99021 Tocris 4423 Stock concentration 30 mM, final
concentration 3 µM
DMEM/F12 Gibco 11330032 stored at 4 °C
Gastrin I Tocris 3006 Stock concentration 100 mM, final
concentration 10 nM
GlutaMAX Gibco 35050-061 100 X
HEPES Gibco 15630-080 100 X
Matrigel martix BD 356231 stored at -20 °C
N-acetylcysteine Sigma Aldrich A9165 Stock concentration 500 mM, final
concentration 1 mM
Nictinamide Sigma Aldrich N0636 Stock concentration 1 M, final concentration 3 mM
Penicillin/streptomycin Sangon Bitech  A600135-0025 100 X
Recombinant human EGF Peprotech AF-100-15 Stock concentration 100 µg/ml,final concentration 50 ng/ml
Recombinant human FGF10 Peprotech 100-26 Stock concentration 100 µg/ml, final concentration 100 ng/ml
Recombinant human HGF Peprotech 100-39 Stock concentration 100 µg/ml, final concentration 25 ng/ml
Recombinant Human TGF-α Peprotech 100-16A Stock concentration 100 µg/ml, final concentration 100 ng/ml
Recombinant Human TNF-α Origene TP750007-1000 Stock concentration 100 µg/ml, final concentration 100 ng/ml
Rho kinase inhibitor Y-27632 Abmole Bioscience Y-27632 dihydrochloride Stock concentration 10 mM, final concentration 10 µM
Rspondin-1conditioned medium Stable cell line generated in the Hu Lab. Final concentration 15%.
Others
0.22 µm filter Millipore SCGPT01RE
16 # silicone tube LangerPump
24 well, suspension Greiner bio-one GN662102-100EA
37 °C Water Bath
70 µm filter BD 352350
Accutase stemcell AT-104 stored at 4 °C
Anti-CTNNB1 BD 610154 Mouse
Anti-GAPDH CST 5174S Rabbit
Anti-HDAC7 Abcam ab50212 Mouse
Anti-KI67 Abcam ab15580 Rabbit
Biological safety cabinet ESCO CCL-170B-8
Cell Recovery Solution Corning 354253 stored at 4 °C
Centrifuge 5430 eppendorf 542700097
CO2 incubator ESCO AC2-4S1
DMSO Sangon Bitech  A100231 stored at RT
EVOS FL Color Imaging Systems Invitrogen AME4300
Hdac3 siRNA Guangzhou RiboBio Co., Ltd. siG2003180909192555 stored at -20 °C
Hdac7 lentivirus ShanghaiGenePharmaCo.,Ltd LV2020-2364 stored at -80 °C
Hitrans G A Shanghai Genechem Co.,Ltd. REVG004 Increased virus infection efficiency
Image Pro Plus software Media Cybernetics, Bethesda, MD, USA version 6.0
Lipofectamin RNAiMAX Transfection Reagent Invitrogen 13778150 Increased virus infection efficiency
Live cell dye Luna F23001 stored at 4 °C
Low-speed desktop centrifuge cence TD5A-WS/TD5AWS
Nucleofactor-α 2b Device Lonza
Opti-MEM Gibco 31985070 stored at 4 °C
Pasteur pipette Sangon Bitech F621006-0001
Peristaltic pump LangerPump BT100-2J
PVDF membrane Millipore IPVH00010 Activate with methanol
PX458 Addgene 48138 stored at -80 °C
Refrigerated centrifuge Thermo Scientific Heraeus Labofuge 400
RSL3 MCE HY-100218A Stock concentration 10 mM, final concentration 4 µM
Trypsin/EDTA Gibico 25200072 stored at 4 °C
Wee1 siRNA Guangzhou RiboBio Co., Ltd. siG2003180909205971 stored at -20 °C

References

  1. Lancaster, M. A., Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 345 (6194), 124-125 (2014).
  2. Sasai, Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell. 12 (5), 520-530 (2013).
  3. Sato, T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459 (7244), 262-265 (2009).
  4. Paola, A., et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 570, 523-527 (2019).
  5. Atsuhiro, T., Ryuichi, N. Higher-Order Kidney Organogenesis from Pluripotent Stem Cells. Cell Stem Cell. 21 (6), 730-746 (2017).
  6. Huch, M., et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 494 (7436), 247-250 (2013).
  7. Wang, D. S., et al. Long-Term Expansion of Pancreatic Islet Organoids from Resident Procr + Progenitors. Cell. 180 (6), 1198-1211 (2020).
  8. Jarno, D., Hans, C. Organoids in cancer research. Nature Reviews Cancer. 18, 407-418 (2018).
  9. Hans, C. Modeling Development and Disease with Organoids. Cell. 165 (7), 1586-1597 (2016).
  10. Forbes, S. J., Newsome, P. N. Liver regeneration-mechanisms and models to clinical application. Nat Rev Gastroenterol Hepatol. 13 (8), 473-485 (2016).
  11. Zhang, K., et al. In Vitro Expansion of Primary Human Hepatocytes with Efficient Liver Repopulation Capacity. Cell Stem Cell. 23 (6), 806-819 (2018).
  12. Katsuda, T., et al. Conversion of Terminally Committed Hepatocytes to Culturable Bipotent Progenitor Cells with Regenerative Capacity. Cell Stem Cell. 20 (1), 41-55 (2017).
  13. Hu, H., et al. Long-Term Expansion of Functional Mouse and Human Hepatocytes as 3D Organoids. Cell. 175 (6), 1591-1606 (2018).
  14. Peng, W., et al. Inflammatory Cytokine TNFalpha Promotes the Long-Term Expansion of Primary Hepatocytes in 3D Culture. Cell. 175 (6), 1607-1619 (2018).
  15. Xiang, C., et al. Long-term functional maintenance of primary human hepatocytes in vitro. Science. 364 (6438), 399-402 (2019).
  16. Huch, M., et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 160 (1-2), 299-312 (2015).
  17. Broutier, L., et al. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nature Protocol. 11 (9), 1724-1743 (2016).
check_url/kr/62438?article_type=t

Play Video

Cite This Article
Lian, J., Meng, X., Zhang, X., Hu, H. Establishment and Genetic Manipulation of Murine Hepatocyte Organoids. J. Vis. Exp. (180), e62438, doi:10.3791/62438 (2022).

View Video