Summary

结核分枝杆菌 通过尺寸排阻色谱实现细胞外囊泡富集

Published: May 19, 2022
doi:

Summary

该方案描述了尺寸排阻色谱,这是一种从培养物上清液中富集 结核分枝杆菌 细胞外囊泡的简单且可重复的技术。

Abstract

细胞外囊泡(EV)在细菌感染中的作用已成为理解微生物生理学的新途径。具体而言, 结核分枝杆菌 (Mtb)EV在宿主 – 病原体相互作用和对环境压力的反应中发挥作用。Mtb EV也具有高度抗原性,并显示出作为疫苗成分的潜力。纯化Mtb EV的最常用方法是密度梯度超速离心。该过程有几个局限性,包括低通量,低产量,依赖昂贵的设备,技术挑战,并且可能对最终的制备产生负面影响。尺寸排阻色谱(SEC)是一种更温和的替代方法,可克服超速离心的许多局限性。该协议表明,SEC对MTB EV富集有效,并以快速和可扩展的方式生产高质量的MTB EV制剂,从而提高产量。此外,通过定量和鉴定程序与密度梯度超速离心的比较证明了SEC的优势。虽然EV数量(纳米颗粒跟踪分析),表型(透射电子显微镜)和含量(蛋白质印迹)的评估是为Mtb EV量身定制的,但提供的工作流程可以应用于其他分枝杆菌。

Introduction

病原体释放的细胞外囊泡(EV)可能是解锁控制传染病的新技术的关键1. 结核分枝杆菌(Mtb)是一种具有高度后果的病原体,每年感染约三分之一的世界人口,夺走数百万人的生命2。Mtb的EV生产有据可查,但在感染背景下,这些EV的生物发生和各种作用(即免疫刺激,免疫抑制,铁和营养获取)难以捉摸345。了解Mtb EVs组成的努力揭示了50-150nm脂质膜封闭的球体,这些脂质膜来自含有具有免疫学意义的脂质和蛋白质的质膜36。对Mtb EV在细菌生理学中的作用的研究揭示了细菌EV调节在响应环境压力对生存的重要性5。宿主- 病原体相互作用研究的解释更加复杂,但有证据表明,Mtb EV可以影响宿主的免疫反应,并可能作为有效的疫苗接种成分347

到目前为止,大多数Mtb EV的研究都依赖于密度梯度超速离心进行囊泡富集8。这对小规模研究是有效的。然而,这种技术有几个技术和后勤方面的挑战。替代工作流程将多步离心与最终超速离心步骤相结合,以去除整个细胞和大碎片,以沉淀EV。这种方法的效率可能不同,并且通常导致可溶性非囊泡相关生物分子的低产量和共纯化,同时也影响囊泡完整性9。此外,此过程非常耗时,需要大量手动操作,并且由于设备限制,吞吐量非常有限。

本方案描述了密度梯度超速离心的替代技术:尺寸排阻色谱(SEC)。该方法已被证明适用于环境分枝杆菌,并且在当前的工作中,它已被外推到Mtb10。市售的色谱柱和自动馏分收集器可以提高制备的一致性,并减少对特定昂贵设备的需求。与密度梯度超速离心相比,也可以在很短的时间内完成该协议,从而提高通量。该技术在技术上的挑战性较小,使其更容易掌握,并且可以增加实验室间/实验室内的可重复性。最后,SEC具有高分离效率,并且温和,保持囊泡的完整性。

Protocol

科罗拉多州立大学机构生物安全委员会批准了本研究(19-046B)。 结核分枝杆菌 的培养和富含EV的培养物上清液的收获由训练有素的人员在高密闭实验室进行。在实施、确认并得到机构生物安全政策批准的有效灭活方法后,这些材料被移出高密闭区。在复制方案时,如果验证灭活或无菌过滤方法不可行,则需要在高密闭实验室中执行以下程序。 1. 粗山地车EV精矿的?…

Representative Results

浓缩 来自结核分枝杆菌 (Mtb)的培养物滤液蛋白(CFP),定量,然后将3mg材料施用于尺寸排阻色谱(SEC)柱。蛋白质和颗粒浓度分别由支链氨基酸和NTA列举。蛋白质和颗粒回收的预期范围以及为这些结果获得的确切值报告在 表1中。远高于这些范围的值可能表示污染或色谱柱完整性问题。值明显较低,指向超滤步骤中的问题,因此需要将流过量与起始CFP和100R进行比较,以确定…

Discussion

结核分枝杆菌 细胞外囊泡是高度抗原的储库,这使它们成为开发诊断工具和未来疫苗的有吸引力的途径41920。从历史上看,密度梯度超速离心已被用于将Mtb EV与其他可溶性分泌材料分离8。虽然该过程是有效的,但它也非常耗时,技术上具有挑战性,并且可能会影响所得EV准备的完整性

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢兽医学院和生物医学科学经验奖和大学研究委员会共享研究计划对NKG的支持,以及ATCC(奖项#2016-0550-0002)对KMD的资助。我们还要感谢安妮·辛普森的技术支持和BEI资源,NIAID,NIH提供以下试剂:单克隆抗结核分枝杆菌LpqH(基因Rv3763),IT-54(体外生产),NR-13792,单克隆抗结核分枝杆菌GROES(基因Rv3418c),克隆IT-3(SA-12)(体外生产),NR-49223和单克隆抗结核分枝杆菌LAM,克隆CS-35(体外产生),NR-13811。

Materials

20x MES SDS Running Buffer ThermoFisher Scientific NP0002
96 well plate Corning 15705-066
Automatic Fraction Collector IZON Science AFC-V1-USD
BenchMark Pre-stained Protein Ladder Invitrogen 10748010
Benchtop centrifuge Beckman Coulter Allegra 6R
Centricon Plus – 70 Centrifugal filter, 100 kDa cutoff Millipore Sigma UFC710008 Ultrafiltration device used in step 1.1
Electroblotting System ThermoFisher Scientific 09-528-135
EM Grade Paraformaldehyde Electron Microscopy Sciences 15714-S
Formvar/Carbon 200 mesh Cu Grids Electron Microscopy Sciences FCF200H-Cu-TA
Goat Anti-Mouse IgG H&L (Alkaline Phosphatase), whole molecule, 1 mL AbCam ab6790 Secondary antibody
JEM-1400 Transmission Electron Microscope JOEL
Micro BCA Protein Assay Kit ThermoFisher Scientific 23235
Microplate reader BIOTEK Epoch
Monoclonal Anti-Mycobacterium tuberculosis GroES (Gene Rv3814c) BEI Resources NR-49223 Primary antibody
Monoclonal Anti-Mycobacterium tuberculosis LpqH (Gene Rv3763) BEI Resources NR-13792 Primary antibody
Monocolonal Anti-Mycobacterium tuberculosis LAM, Clone CS-35 BEI Resources NR-13811 Primary antibody
NanoClean 1070 Fischione Instruments For plasma cleaning of the TEM grid
Nanosight equipped with syringe pump and computer with NanoSight NTA software Malvern Panalytical NS300
Nitrocellulose membrane, Roll, 0.2 μm BioRad 1620112
NuPAGE 4-12% Bis-Tris Protein Gels ThermoFisher Scientific NP0323BOX
Phosphate-buffered Saline, 1X without calcium and magnesium Corning 21-040-CV
Pierce BCA Protein Assay Kit ThermoFisher Scientific 23225
PowerPac Basic Power Supply BioRad 1645050
qEV Original 35 nm 5/pk IZON Science SP5-USD SEC column
SDS sample buffer Boster AR1112 In-house recipe used in this procedure, however this product is equivalent
SDS-PAGE gel chamber ThermoFisher Scientific EI0001
Sigmafast BCIP/NBT Millipore Sigma B5655
Silver Stain Plus Kit BioRad 1610449 In-house protocol used in this procedure, however this kit is equivalent
Uranyl Acetate Electron Microscopy Sciences 22400

References

  1. Gill, S., Catchpole, R., Forterre, P. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiology Reviews. 43 (3), 273-303 (2019).
  2. World Health Organization. GLOBAL TUBERCULOSIS REPORT 2021. World Health Organization. , (2021).
  3. Prados-Rosales, R., et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. Journal of Clinical Investigation. 121 (4), 1471-1483 (2011).
  4. Prados-Rosales, R., et al. Mycobacterial membrane vesicles administered systemically in mice induce a protective immune response to surface compartments of mycobacterium tuberculosis. mBio. 5 (5), 01921 (2014).
  5. Prados-Rosales, R., et al. Role for mycobacterium tuberculosis membrane vesicles in iron acquisition. Journal of Bacteriology. 196 (6), 1250-1256 (2014).
  6. Lee, J., et al. Proteomic analysis of extracellular vesicles derived from Mycobacterium tuberculosis. Proteomics. 15 (19), 3331-3337 (2015).
  7. Athman, J. J., et al. Mycobacterium tuberculosis Membrane Vesicles Inhibit T Cell Activation. The Journal of Immunology. 198 (5), 2028-2037 (2017).
  8. Prados-Rosales, R., Brown, L., Casadevall, A., Montalvo-Quirós, S., Luque-Garcia, J. L. Isolation and identification of membrane vesicle-associated proteins in Gram-positive bacteria and mycobacteria. MethodsX. 1, 124-129 (2014).
  9. Cvjetkovic, A., Lötvall, J., Lässer, C. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. Journal of Extracellular Vesicles. 3 (1), 23111 (2014).
  10. Dauros Singorenko, P., et al. Isolation of membrane vesicles from prokaryotes: a technical and biological comparison reveals heterogeneity. Journal of Extracellular Vesicles. 6 (1), 1324731 (2017).
  11. Wallace, E., et al. Culturing mycobacteria. Methods in Molecular Biology. 2314, 1-58 (2021).
  12. Lucas, M., et al. Extraction and separation of mycobacterial proteins. Methods in Molecular Biology. 2314, 77-107 (2021).
  13. Walker, S. A., Kennedy, M. T., Zasadzinski, J. A. Encapsulation of bilayer vesicles by self-assembly. Nature. 387 (6628), 61-64 (1997).
  14. Edwards, D. A., et al. Spontaneous vesicle formation at lipid bilayer membranes. Biophysical Journal. 71 (3), 1208 (1996).
  15. . Production Manuals & SOPs. SP007: Running of polyacrylamide gels, SP011: Western blot, and SP0012: Silver staining protocols Available from: https://labs.vetmebiosci.colostate.edu/dobos/bei-resources/ (2022)
  16. Engers, H. D., et al. Results of a World Health Organization-sponsored workshop to characterize antigens recognized by mycobacterium-specific monoclonal antibodies. Infection and Immunity. 51 (2), 718-720 (1986).
  17. Chatterjee, D., Lowell, K., Rivoire, B., McNeil, M. R., Brennan, P. J. Lipoarabinomannan of Mycobacterium tuberculosis. Capping with mannosyl residues in some strains. Journal of Biological Chemistry. 267 (9), 6234-6239 (1992).
  18. Théry, C., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles. 7 (1), 1535750 (2018).
  19. Palacios, A., et al. Mycobacterium tuberculosis extracellular vesicle-associated lipoprotein LpqH as a potential biomarker to distinguish paratuberculosis infection or vaccination from tuberculosis infection. BMC Veterinary Research. 15 (1), 1-9 (2019).
  20. Ziegenbalg, A., et al. Immunogenicity of mycobacterial vesicles in humans: Identification of a new tuberculosis antibody biomarker. Tuberculosis. 93 (4), 448-455 (2013).
  21. Chiplunkar, S. S., Silva, C. A., Bermudez, L. E., Danelishvili, L. Characterization of membrane vesicles released by Mycobacterium avium in response to environment mimicking the macrophage phagosome. Future Microbiology. 14 (4), 293-313 (2019).

Play Video

Cite This Article
Ryan, J. M., Dobos, K. M., Kruh-Garcia, N. A. Mycobacterium tuberculosis Extracellular Vesicle Enrichment through Size Exclusion Chromatography. J. Vis. Exp. (183), e63895, doi:10.3791/63895 (2022).

View Video