Summary

从人多能干细胞定向多巴胺能神经元分化

Published: September 15, 2014
doi:

Summary

We, based on knowledge from developmental biology and published research, developed an optimized protocol to efficiently generate A9 midbrain dopaminergic neurons from both human embryonic stem cells and human induced pluripotent stem cells, which would be useful for disease modeling and cell replacement therapy for Parkinson’s disease.

Abstract

Dopaminergic (DA) neurons in the substantia nigra pars compacta (also known as A9 DA neurons) are the specific cell type that is lost in Parkinson’s disease (PD). There is great interest in deriving A9 DA neurons from human pluripotent stem cells (hPSCs) for regenerative cell replacement therapy for PD. During neural development, A9 DA neurons originate from the floor plate (FP) precursors located at the ventral midline of the central nervous system. Here, we optimized the culture conditions for the stepwise differentiation of hPSCs to A9 DA neurons, which mimics embryonic DA neuron development. In our protocol, we first describe the efficient generation of FP precursor cells from hPSCs using a small molecule method, and then convert the FP cells to A9 DA neurons, which could be maintained in vitro for several months. This efficient, repeatable and controllable protocol works well in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) from normal persons and PD patients, in which one could derive A9 DA neurons to perform in vitro disease modeling and drug screening and in vivo cell transplantation therapy for PD.

Introduction

多巴胺(DA)神经元可以在几个脑区域,包括脑,下丘脑,视网膜,和嗅球中找到。在A9多巴胺神经元在黑质致密部(黑质)控制由突出到前脑,纹状体和形成锥体外运动系统的行为和动作。 A9多巴胺神经元变性导致帕金森氏病(PD),这是第二个最常见的人类神经变性疾病,目前无法治愈的。细胞替代疗法是最有前途的策略为PD 1的处理中的一个,因此,出现了在由人多能干细胞(hPSCs)导出A9多巴胺神经元的极大兴趣,包括人类胚胎干细胞(胚胎干细胞)和最近的人类诱导多能干细胞(iPS细胞)。

许多研究都试图通过各种方法hPSCs得到A9的多巴胺神经元。通过神经网络的最早报道都产生多巴胺的神经元莲座祖阶段。通过合作,培养与MS5 23-5尼龙6间质细胞有或没有外部生长因子2-4周,L的Studer和同事成功地诱导人类胚胎干细胞产生神经花环其他三个组。然后,他们丰富了这些玫瑰花机械清扫或酶消化进一步分化。在其他报告中,研究人员通过生成的胚体悬浮培养分化6-9神经花环(EB)。后来,研究人员建立了基于单层分化方法10,11,在那里它们镀人类胚胎干细胞和人iPS细胞的细胞外基质,添加于不同生长因子的培养以诱导hPSCs分化为多巴胺神经元,其模拟了体内胚胎DA神经元的发展。虽然所有这些研究中得到的酪氨酸羟化酶(TH)表达细胞与多巴胺神经元的某些特征,整个分化过程中的时间和劳动消耗,通常效率低,而且更重要的是,这些神经元的A9身份,除了一个与LMX1a异位表达12多数研究都没有表现出来。最近,一种新的地板板(FP)的协议被开发13-16,其中,首先由活化的音猬和经典Wnt信号转导途径的过程中分化的早期阶段产生的FP的前体与多巴胺神经元的电势,然后这些计划生育细胞进一步指明DA能神经元。虽然这个协议是更有效的,但仍存在一些问题;例如,在整个分化过程需要很长的时间(至少35天),是饲养细胞依赖的15,或者是EB依赖性16或A9身份没有被证实14。

在此基础上,从体内胚胎多巴胺神经元发育等研究人员公布业绩的知识,我们优化培养条件为EFFicient代来自人类胚胎干细胞和iPS细胞多巴胺神经元。我们首先生成的FP的前体细胞通过激活Wnt信号传导的小分子CHIR99021和音猬蛋白与小分子SAG和嘌吗啡胺的信令。这些计划生育细胞表达FOXA2,LMX1a,CORIN,OTX2和巢。然后,我们指定了这些计划生育细胞对多巴胺神经元的生长因子,包括BDNF,GDNF 。生成的多巴胺神经元的A9细胞类型,因为它们是阳性GIRK2而负钙结合蛋白17。该协议是饲养细胞和EB独立,高效和可重复性。通过此协议,一个也可以,或者从PD患者的体外模型的PD或测试潜在的治疗药物为PD iPS细胞在不到4周的胚胎干细胞或正常人的细胞移植研究iPS细胞获得多巴胺神经元。

Protocol

1,准备文化传媒通过结合下面的制备小鼠胚胎成纤维细胞(MEF)介质:445毫升的DMEM 50毫升胎牛血清(FBS)和5ml 100X青霉素/氨苄青霉素贮备液。保持过滤灭菌后的培养基在4℃不超过14天。 制备HPSC培养基由下列组成含有血清的385毫升的DMEM / F 12,将100ml敲除血清替代品(KSR),将5ml 100×非必需氨基酸原液,将5ml 100×青霉素/氨苄青霉素贮备液,加入5ml 100倍巯基乙醇储备液和10ng / ml的bFGF…

Representative Results

该分化方案的概要示于图1。这里给出的分化方案的效率依赖于起始细胞的状态。因此,重要的是要确保,第一个删除所有分化集落解离hPSCs成单个细胞的分化之前,第二,1耗尽大部分,如果不是全部,在MEF饲养细胞在明胶包被的平板孵育细胞30分钟后,和第三,1板的HPSC单个细胞在适当的密度到基质胶盘。如示于图2中 ,再接种HPSC单个细胞将在分化之前的48小时为簇扩大?…

Discussion

人多能干细胞(包括胚胎干细胞和人iPS细胞)可以在体外分化而产生大部分,如果不是全部,我们的身体,包括多巴胺神经元,这已被证明在以前的研究中19的细胞类型。这里,基于从胚胎多巴胺能神经元的发展20知识和公布的协议从其他实验室14,15,我们优化了培养条件对从胚胎干细胞和iPS细胞多巴胺神经元的产生。这个协议是有效的,可重复的,我们已经成功地?…

Declarações

The authors have nothing to disclose.

Acknowledgements

The authors thank members of the Renee Reijo Pera laboratory for help during development of this protocol and during preparation of this manuscript. This work is supported by California Institute for Regenerative Medicine (CIRM) shared laboratory (CL-00518).

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
DMEM Life Technologies 10569-010
FBS Life Technologies 26140
penicillin/ampicillin Life Technologies 15140-122
DMEM/F12 Life Technologies 10565-018
KSR Life Technologies 10828-028
Non-essential amino acid Life Technologies 11140-050
b-mercaptoethanol Millipore ES-007-E
bFGF R&D Systems 233-FB-025
mTesR1 STEMCELL Technologies 5850
Collagenase IV Life Technologies 17104-019
Gelatin Sigma-Aldrich G9391
N2 supplement Life Technologies 17502-048
B27 supplement Life Technologies 17504-044
Neurobasal Life Technologies 21103-049
Glutamax Life Technologies 35050-061
PBS Life Technologies 10010-023
Growth factor reduced matrigel BD Biosciences 354230
Accutase MP Biomedicals 1000449
Thiazovivin Santa Cruz Biotechnology sc-361380
SB431542 Tocris Bioscience 1614
LDN-193189 Stemgent 04-0074
SAG EMD Millipore 566660-1MG
Purmorphamine Santa Cruz Biotechnology sc-202785
FGF8b R&D Systems 423-F8-025
CHIR99021 Cellagen Technology C2447-2s
BDNF R&D Systems 248-BD-025
GDNF R&D Systems 212-GD-010
TGF-beta3 R&D Systems 243-B3-002
Ascorbic acid Sigma-Aldrich A4034
cAMP Sigma-Aldrich D0627
Mouse anti human NESTIN antibody Santa Cruz Biotechnology sc-23927 1/1000 dilution
Rabbit anti human OTX2 antibody Millipore AB9566 1/2000 dilutiion
Goat anti human FOXA2 antibody R&D Systems AF2400 1/200 dilution
rabbit anti human LMX1a antibody Millipore AB10533 1/1000 dilution
Rabbit anti human TH antibody Pel Freez P40101 1/500 dilution
Chicken anti human TH antibody Millipore AB9702 1/500 dilution
Mouse anti human TUJ1 antibody Covance MMS-435P 1/2000 dilution
Rabbit anti human GIRK2 antibody Abcam ab30738 1/300 dilution
Rabbit anti human Calbindin antibody Abcam ab25085 1/400 dilution
Centrifuge Eppendorf 5804

Referências

  1. Freed, C. R. Will embryonic stem cells be a useful source of dopamine neurons for transplant into patients with Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America. 99, 1755-1757 (2002).
  2. Perrier, A. L., et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America. 101, 12543-12548 (2004).
  3. Park, C. H., et al. In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. Journal of Neurochemistry. 92, 1265-1276 (2005).
  4. Buytaert-Hoefen, K. A., Alvarez, E., Freed, C. R. Generation of tyrosine hydroxylase positive neurons from human embryonic stem cells after coculture with cellular substrates and exposure to GDNF. Stem Cells. 22, 669-674 (2004).
  5. Zeng, X., et al. Dopaminergic differentiation of human embryonic stem cells. Stem Cells. 22, 925-940 (2004).
  6. Yan, Y., et al. Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells. 23, 781-790 (2005).
  7. Schulz, T. C., et al. Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. Stem Cells. 22, 1218-1238 (2004).
  8. Park, S., et al. Generation of dopaminergic neurons in vitro from human embryonic stem cells treated with neurotrophic factors. Neuroscience Letters. 359, 99-103 (2004).
  9. Cho, M. S., et al. Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America. 105, 3392-3397 (2008).
  10. Cooper, O., et al. Differentiation of human ES and Parkinson’s disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid. Molecular and Cellular Neurosciences. 45, 258-266 (2010).
  11. Chambers, S. M., et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology. 27, 275-280 (2009).
  12. Sanchez-Danes, A., et al. Efficient generation of A9 midbrain dopaminergic neurons by lentiviral delivery of LMX1A in human embryonic stem cells and induced pluripotent stem cells. Human Gene Therapy. 23, 56-69 (2012).
  13. Fasano, C. A., Chambers, S. M., Lee, G., Tomishima, M. J., Studer, L. Efficient derivation of functional floor plate tissue from human embryonic stem cells. Cell Stem Cell. 6, 336-347 (2010).
  14. Kriks, S., et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. 480, 547-551 (2011).
  15. Xi, J., et al. Specification of midbrain dopamine neurons from primate pluripotent stem cells. Stem Cells. 30, 1655-1663 (2012).
  16. Kirkeby, A., et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Reports. 1, 703-714 (2012).
  17. Mendez, I., et al. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain: a Journal of Neurology. 128, 1498-1510 (2005).
  18. Takahashi, K., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131, 861-872 (2007).
  19. Nishimura, K., Takahashi, J. Therapeutic application of stem cell technology toward the treatment of Parkinson’s disease. Biological & Pharmaceutical Bulletin. 36, 171-175 (2013).
  20. Smidt, M. P., Burbach, J. P. How to make a mesodiencephalic dopaminergic neuron. Nature Reviews. Neuroscience. 8, 21-32 (2007).
  21. Wang, G., et al. Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochemical and Biophysical Research Communications. 330, 934-942 (2005).
  22. Chen, J. K., Taipale, J., Young, K. E., Maiti, T., Beachy, P. A. Small molecule modulation of Smoothened activity. Proceedings of the National Academy of Sciences of the United States of America. 99, 14071-14076 (2002).
check_url/pt/51737?article_type=t

Play Video

Citar este artigo
Zhang, P., Xia, N., Reijo Pera, R. A. Directed Dopaminergic Neuron Differentiation from Human Pluripotent Stem Cells. J. Vis. Exp. (91), e51737, doi:10.3791/51737 (2014).

View Video