Summary

使用腺相关病毒作为一种工具来研究疾病中的视网膜障碍

Published: April 19, 2015
doi:

Summary

To investigate the blood-retinal barrier permeability and the inner limiting membrane integrity in animal models of retinal disease, we used several adeno-associated virus (AAV) variants as tools to label retinal neurons and glia. Virus mediated reporter gene expression is then used as an indicator of retinal barrier permeability.

Abstract

Müller细胞是视网膜的主要神经胶质细胞。其最终的脚形成的视网膜在外侧和内界膜(ILM)的范围内,并在与星形胶质细胞,周细胞和内皮细胞结合它们建立血 – 视网膜屏障(BRB)。 BRB限制了血液和视网膜之间的物质运输而在ILM充当基底膜限定组织学视网膜和玻璃体腔之间的边界。标记Müller细胞是特别相关,研究视网膜屏障的物理状态,因为这些细胞是BRB和ILM的一个组成部分。既BRB和ILM经常改变视网膜病和负责疾病症状。

有几种公认的方法来研究的BRB的完整性,如Evans蓝测定法或荧光血管造影。然而,这些方法不提供关于BRB渗透性吨的范围内的信息Ø较大的分子,在纳米范围内。而且,它们不提供对其他视网膜屏障如在ILM的状态信息。研究BRB渗透性沿着视网膜ILM,我们使用的AAV基础的方法,可提供对渗透性BRB对较大分子虽然表示在疾病状态在ILM和胞外基质蛋白的状态的信息。两个变种AAV对于这样的研究有用:AAV5和ShH10。 AAV5具有天然趋光感受器,但它不能得到跨越到外视网膜给药时进入玻璃体时在ILM是完整的( 即,在野生型视网膜)。 ShH10具有朝向胶质细胞强烈的取向和在健康和患病的视网膜将选择性标记米勒胶质细胞。 ShH10提供视网膜更高效的基因传递,其中ILM受到损害。再加上免疫和血液DNA分析这些病毒工具揭示到的视网膜疾病障碍的状态。

Introduction

Müller细胞是视网膜的主要神经胶质成分。形态,它们跨越视网膜径向和它们endfeet,与玻璃体接触,面对在ILM和后者的秘密分量。在ILM是一种基底膜约十个不同的细胞外基质蛋白(层粘连蛋白,聚集蛋白,串珠素,巢蛋白,胶原蛋白和一些硫酸肝素蛋白聚糖)组成。在开发过程中,它的存在是不可或缺的视网膜组织发生神经节细胞1-3,视神经轴突的导航和生存。但是,ILM是非本质的成人视网膜,可以在某些病理手术切除,而不会造成视网膜损伤4。在基因治疗中,此膜变成为使用自动增值服务的视网膜高效转导通过玻璃体内注射5的物理屏障。

通过他们的流程的广泛树枝状,Müller细胞提供营养和监管suppoRT既视网膜神经细胞和血管细胞。 Müller细胞也参与视网膜动态平衡的调节,在BRB 6的形成和维持。紧密连接视网膜毛细血管内皮细胞之间,Müller细胞,星形胶质细胞和周形成BRB。 BRB防止某些物质进入retina.In许多疾病,如糖 ​​尿病性视网膜病变,视网膜静脉阻塞和呼吸系统疾病,视网膜缺氧会导致通过BRB 7-9泄漏。这种断裂是与增加血管通透性,导致血管性水肿,视网膜脱离和视网膜损伤相关联。

Müller细胞被紧密地与血管和基底膜相关联,打在两BRB和ILM完整性中起重要作用。因此,标记缪勒胶质细胞是特别相关的这些视网膜屏障的物理状态的研究。

经典同盟,BRB渗透性是用伊文思蓝测定法,包括全身性注射Evans蓝染料,其结合非共价地与血浆白蛋白的测定。此法测量从血管进入视网膜(见协议第5条)10白蛋白漏出(蛋白质中等大小,〜66 kDa的)。另外,血管渗漏可以通过荧光血管造影视网膜的证明荧光素渗漏进行可视化(小分子〜359达;见协议第6条)11。然而,这两种方法允许BRB渗透性小分子和蛋白质的评估,但它们不提供关于在ILM的完整性信息。

因此,为了研究BRB渗透性,我们使用的AAV基础的方法,让上BRB渗透性至较大的分子( 例如,AAV颗粒,25纳米的直径)的信息。事实上,我们的方法可以检测出的AAV转基因的存在于血液中,这将表明,〜25 nm的直径的颗粒会能够渗透到血液中。这种方法还提供了在病理条件下在ILM和细胞外基质蛋白质的结构信息。两个变种AAV对于这样的研究有用:AAV5和ShH10。视网膜下注射,AAV5具有天然向性为感光细胞和视网膜色素上皮细胞12,但是它不能获得跨越到外视网膜给药时进入玻璃体在野生型视网膜中有完整的ILM 5,13。 ShH10是已工程化以特异性靶向神经胶质细胞在神经元14,15的AAV变种。 ShH10选择性标记在健康和患病的视网膜与视网膜增加的效率受损障碍16Müller细胞。再加immuhistochemistry和血液DNA分析这些病毒的工具提供的视网膜屏障的状态和它们在疾病的参与( 图1)的信息。

Protocol

在这项研究中使用的所有动物根据ARVO声明动物在眼科和视觉研究中使用的照顾和处理。 1.生产重组腺相关病毒(腺相关病毒)由HEK-293细胞17,18的瞬时转染的注:请参阅麦克卢尔C,朱庇特(2011)19。 纯化大规模质粒制备的AAV载体质粒(至少1毫克/毫升)。使用3质粒。所述AAV辅助质粒携带复制和衣壳基因 ​​未经AAV反向末端重复的I…

Representative Results

我们预计增加的使用ShH10缪勒胶质细胞的视网膜转导,如果该动物模型显示扰动在ILM( 图2A – B)的结构。例如,我们已经表明,在不存在的Dp71,ShH10靶特异性而更有效地缪勒胶质细胞通过玻璃体内注射,这表明在ILM的通透性增加在该鼠标线相比野生型小鼠16( 图2C – F)。 AAV5也可以用作ILM渗透性的指标。 AAV5,无效通…

Discussion

该BRB调节血液和视网膜之间的分子交换。其击穿与各种疾病,如糖尿病性视网膜病或年龄相关性黄斑变性(AMD)相关联。我们最近发现,在一个肌营养不良蛋白敲除小鼠,其中显示可渗透BRB,视网膜变得更宽容的由腺相关病毒载体(AAV)介导的基因传递。然而,尽管BRB渗透性的AAV颗粒喷入眼内保持局限于此模型中的眼隔室。我们的研究结果表明,基因治疗中显示渗透BRB并不代表全身副作用附加险?…

Declarações

The authors have nothing to disclose.

Acknowledgements

We thank the imaging platform of the Institut de la Vision. We acknowledge the French Muscular Dystrophy Association (AFM) for a PhD fellowship to O.V. and Allergan INC. This work performed in the frame of the LABEX LIFESENSES [reference ANR-10-LABX-65] was supported by French state funds managed by the ANR. We thank Peggy Barbe, and Mélissa Desrosiers for technical assistance with AAV preparations. We are grateful to Stéphane Fouquet for excellent technical assistance in confocal microscopy and his expert input with the interpretation of the results.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
C57BL6J mice strain JANVIER LABS mice
Ketamine 500 Virbac France anesthetic
Xylazine Rompun 2% Bayer Healthcare anesthetic
Neosynephrine 5% Faure Europhta dilatant
Mydriaticum 0,5% Thea dilatant
Sterdex Novartis anti-inflammatory
Cryomatrix embedding resin Thermo Scientific 6769006
Superfrost Plus Adhesion Slides Thermo Scientific 10143352 slides
anti-laminin  Sigma L9393 antibody
anti-rhodopsin clone 4D2  Millipore MABN15 antibody
anti-glutamine synthetase clone GS-6  Millipore MAB302 antibody
Anti-Glial Fibrillary Acidic Protein Dako 334 antibody
PNA Lectin  Invitrogen L32459 probe
Alexa fluor conjugated secondary antibodies  Invitrogen antibody
Fluorsave reagent Calbiochem 345789 mounting medium
QIAmp DNA Micro Kit  QIAGEN 56304
GoTaq DNA polymerase Promega M3001
Evans Blue dye  Sigma E2129  dye
5 µm filter  Millipore
Sodium Citrate  Sigma S1804
Citric acid  Sigma C1909-2.5KG
Formamide spectrophotometric  Sigma 295876-2L
Fluorescein Sigma F2456  dye
Micron III Phoenix Research Labs Microscopy system based on 3-CCD color camera, frame grabber, and off-the-shelf software enables researchers to image mouse retinas.
Insulin Syringes Terumo SS30M3109 
Syringe 10 µl Hamilton Dutscher 74487 Seringue 1701
Needle RN G33, 25 mm, PST 2  Fisher Scientific 11530332 Intravitreal Injection
UltraMicroPump UMP3 World Precision Instruments UMP3 Versatile injector uses microsyringes to deliver picoliter volumes
UltraMicroPump (UMP3) (one) with SYS-Micro4 Controller UMP3-1 Digital controller
Binocular magnifier SZ76 ADVILAB ADV-76B2 Zoom 0.66 x 5 x LEDs with stand epi and dia / Retinas dissection
Spring scissors straight – 8,5cm Bionic France S.a.r.l 15003-08 Retinas dissection
Micro-ciseaux de Vannas courbe 15004-08
Pince Dumont 5 11254-20
Veriti 96-Well Thermal Cycler Life technologies 4375786 Thermocycler
Ultrasonic cleaner  Laboratory Supplies G1125P1T
Nanosep 30k omega tubes  VWR
Speedvac Fisher Scientific SC 110 A
Spectrofluorometer  TECAN  infinite M1000

Referências

  1. Halfter, W. Disruption of the retinal basal lamina during early embryonic development leads to a retraction of vitreal end feet, an increased number of ganglion cells, and aberrant axonal outgrowth. J Comp Neurol. 397 (1), 89-104 (1998).
  2. Halfter, W., Dong, S., Balasubramani, M., Bier, M. E. Temporary disruption of the retinal basal lamina and its effect on retinal histogenesis. Dev Biol. 238 (1), 79-96 (2001).
  3. Halfter, W., Willem, M., Mayer, U. Basement membrane-dependent survival of retinal ganglion cells. Invest Ophthalmol Vis Sci. 46 (3), 1000-1009 (2005).
  4. Abdelkader, E., Lois, N. Internal limiting membrane peeling in vitreo-retinal surgery. Surv Ophthalmol. 53 (4), 368-396 (2008).
  5. Dalkara, D., et al. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther. 17 (12), 2096-2102 (2009).
  6. Bringmann, A., et al. Muller cells in the healthy and diseased retina. Prog Retin Eye Res. 25 (4), 397-424 (2006).
  7. Eichler, W., Kuhrt, H., Hoffmann, S., Wiedemann, P., Reichenbach, A. VEGF release by retinal glia depends on both oxygen and glucose supply. Neuroreport. 11 (16), 3533-3537 (2000).
  8. Kaur, C., Foulds, W. S., Ling, E. A. Blood-retinal barrier in hypoxic ischaemic conditions: basic concepts, clinical features and management. Prog Retin Eye Res. 27 (6), 622-647 (2008).
  9. Kaur, C., Sivakumar, V., Foulds, W. S. Early response of neurons and glial cells to hypoxia in the retina. Invest Ophthalmol Vis Sci. 47 (3), 1126-1141 (2006).
  10. Xu, Q., Qaum, T., Adamis, A. P. Sensitive blood-retinal barrier breakdown quantitation using Evans blue. Invest Ophthalmol Vis Sci. 42 (3), 789-794 (2001).
  11. Amato, R., Wesolowski, E., Smith, L. E. Microscopic visualization of the retina by angiography with high-molecular-weight fluorescein-labeled dextrans in the mouse. Microvasc Res. 46 (2), 135-142 (1993).
  12. Yang, G. S., et al. Virus-mediated transduction of murine retina with adeno-associated virus: effects of viral capsid and genome size. J Virol. 76 (15), 7651-7660 (2002).
  13. Li, W., et al. Gene therapy following subretinal AAV5 vector delivery is not affected by a previous intravitreal AAV5 vector administration in the partner eye. Mol Vis. 15, 267-275 (2009).
  14. Koerber, J. T., et al. Molecular evolution of adeno-associated virus for enhanced glial gene delivery. Mol Ther. 17 (12), 2088-2095 (2009).
  15. Klimczak, R. R., Koerber, J. T., Dalkara, D., Flannery, J. G., Schaffer, D. V. A novel adeno-associated viral variant for efficient and selective intravitreal transduction of rat Muller cells. PLoS One. 4 (10), e7467 (2009).
  16. Vacca, O., et al. AAV-mediated gene delivery in Dp71-null mouse model with compromised barriers. Glia. , (2013).
  17. Choi, V. W., Asokan, A., Haberman, R. A., Samulski, R. J. Production of recombinant adeno-associated viral vectors. Curr Protoc Hum Genet. 12 (Unit 12 19), (2007).
  18. Choi, V. W., Asokan, A., Haberman, R. A., Samulski, R. J. Production of recombinant adeno-associated viral vectors for in vitro and in vivo use. Curr Protoc Mol Biol. 16 (Unit 16 25), (2007).
  19. McClure, C., Cole, K. L., Wulff, P., Klugmann, M., Murray, A. J. Production and titering of recombinant adeno-associated viral vectors. J Vis Exp. (57), e3348 (2011).
  20. Aurnhammer, C., et al. Universal real-time PCR for the detection and quantification of adeno-associated virus serotype 2-derived inverted terminal repeat sequences. Hum Gene Ther Methods. 23 (1), 18-28 (2012).
  21. Chiu, K., Chang, R. C., So, K. F. Intravitreous injection for establishing ocular diseases model. J Vis Exp. (8), 313 (2007).
  22. Kolstad, K. D., et al. Changes in adeno-associated virus-mediated gene delivery in retinal degeneration. Hum Gene Ther. 21 (5), 571-578 (2010).
  23. Sene, A., et al. Functional implication of Dp71 in osmoregulation and vascular permeability of the retina. PLoS One. 4 (10), e7329 (2009).
  24. Benard, R. A New Quantifiable Blood Retinal Barrier Breakdown Model In Mice. ARVO Annual Meeting. , (2011).
check_url/pt/52451?article_type=t

Play Video

Citar este artigo
Vacca, O., El Mathari, B., Darche, M., Sahel, J., Rendon, A., Dalkara, D. Using Adeno-associated Virus as a Tool to Study Retinal Barriers in Disease. J. Vis. Exp. (98), e52451, doi:10.3791/52451 (2015).

View Video