Summary

无胸​​腺大鼠模型工程前交叉韧带移植评估

Published: March 26, 2015
doi:

Summary

Animal models are important tools for the evaluation of tissue-engineered grafts. This paper presents the protocol for preparing an electrospun biodegradable polymer graft for use in anterior cruciate ligament tissue engineering, as well as a surgical protocol for implantation in a rat model.

Abstract

Anterior cruciate ligament (ACL) rupture is a common ligamentous injury that often requires surgery because the ACL does not heal well without intervention. Current treatment strategies include ligament reconstruction with either autograft or allograft, which each have their associated limitations. Thus, there is interest in designing a tissue-engineered graft for use in ACL reconstruction. We describe the fabrication of an electrospun polymer graft for use in ACL tissue engineering. This polycaprolactone graft is biocompatible, biodegradable, porous, and is comprised of aligned fibers. Because an animal model is necessary to evaluate such a graft, this paper describes an intra-articular athymic rat model of ACL reconstruction that can be used to evaluate engineered grafts, including those seeded with xenogeneic cells. Representative histology and biomechanical testing results at 16 weeks postoperatively are presented, with grafts tested immediately post-implantation and contralateral native ACLs serving as controls. The present study provides a reproducible animal model with which to evaluate tissue engineered ACL grafts, and demonstrates the potential of a regenerative medicine approach to treatment of ACL rupture.

Introduction

前十字韧带(ACL)的破裂是膝关节1的最常见的韧带损伤之一。由于破裂ACL的无法无手术干预治疗,在日常生活和参与体育活动的局限性开车超过175000例患者,每年2到接受手术,以每年十亿美元3估计成本。目前,无论是自体或异体肌腱用于韧带重建。尽管较高的成功率可以与自体移植和更换均可以实现,严重的并发症与这些重建方案4有关。自体移植的组织与供区的发病率相关联,并且在供水有限的,特别是在重新破裂或多韧带损伤的实例。另一方面,同种异体移植组织被延迟接枝集成,不利的炎症反应,理论上的传染疾病的风险,和有限的增刊联LY 5。合成的非降解的移植开发了20世纪70年代和80年代,但过早嫁接破裂,异物反应,骨溶解和滑膜炎6受阻。由于这些严重的问题的结果,目前有可用的在美国的临床使用中没有合成移植物。

由于与现有的移植选项和最近的事态发展在生物学,工程和再生医学这些限制,出现了为ACL移植组织工程解决方案极大的兴趣。当前组织工程策略采用可降解的生物材料和合成材料,以允许宿主的组织向内生长,同时避免与永久合成材料植入7相关的限制。

聚己内酯(PCL)是可生物降解的聚合物,其是FDA批准用于许多医疗应用中,包括粘连屏障和伤口敷料8,即一直Úsed的在各种各样的应用,包括血管,骨,软骨,神经,皮肤,食管组织工程5,9-16。良好的生物相容性,相对较长的体内半衰期,足够的机械强度,以及高弹性有助于该聚合物在组织工程的普及。在伤口愈合的啮齿动物模型中,注入的电纺PCL被证明是无免疫原性,并整合到局部组织无不良反应13。静电PCL的SEM图像示于图1中

当前FDA监管标准,疗效和安全性在小型和大型动物模型将需要一个PCL或任何其他工程ACL移植迁入在美国的临床试验。另外, 在体内条件往往能增加在体外组织工程的ACL移植物的性质。自体韧带重建的大鼠模型的屈digitor微米长肌腱先前已经描述的,在其中天然的ACL被切断,股骨和胫骨隧道钻,和接枝物通过并固定就位用缝合17-22。在本文中,我们将描述这个模型的变形对工程化的ACL替换的评价,而不是用于自体移植的基于重建( 图2)。

尽管许多动物模型韧带组织工程存在,相比于许多原因较大的模型大鼠是有利的。这些优势包括更容易饲养和处理,减少伦理方面的考虑,并降低成本17,23。此外,鼠模型已被广泛地用作模型矫形组织再生,包括软骨,腱和骨组织工程24。特别是,无胸腺裸鼠被选择,因为它们缺乏的细胞介导的免疫应答25,允许最终植入Ò˚F异种供体细胞在此模型中,以进一步增强在未来的工程化移植物。在此方法本文中,我们描述了在ACL重建的无胸腺大鼠模型的制作和无细胞的手术植入,可生物降解的聚合物的接枝。

Protocol

注:所有动物手术均经当地兽医人员和动物使用前开始试验委员会。 1.准备静电纺丝聚己内酯的支架在颗粒形式称重并溶解医用级酯封端的聚(ε – 己内酯)在1,1,1,3,3,3-六氟-2-丙醇以创建10%w / w的在PCL聚合物的溶液。让使用搅拌盘为至少3小时,以确保均匀的溶液的溶液搅拌。 静电纺丝的PCL解决方案来创建高度一致PCL纤维支架制造的袖口。 制备在化学通?…

Representative Results

在我们的92大鼠手术由单个外科医生的经验,平均手术时间从切口到伤口完成为16.9分钟,用4.7分钟的标准偏差。在牺牲的时候,老鼠体重356±23克所有大鼠耐受手术顺利,经历了无并发症。立即手术后,将大鼠注意到承受重量的可操作端,但表现出轻微跛行。一个星期后操作,所有大鼠走动,无明显跛行。在研究过程中的所有动物体重增加稳步推进,在喂养,排尿,排便或习惯没有观察到异常。在…

Discussion

ACL损伤是一种常见的疾病在骨科运动手术,与在目前有限的选择重建。为了制定合适的组织工程替代,将允许再生体内 ACL中,需要一个合适的动物模型。在这项研究中,可生物降解的工程化移植物的制造中被描述,因为这是它在体内使用ACL重建的一个可重复模型中的无胸腺大鼠注入。该模型可以用于评估各种生物材料,包括细胞移植物和那些与PJ内置的生长因子组成的不同组织工程…

Declarações

The authors have nothing to disclose.

Acknowledgements

笔者想感谢加布里埃尔芳香化酶和迈克尔Yeranosian其早期这个项目的迭代技术贡献。该项目资金由临床医生OREF科学家培训格兰特(NL),HH李外科研究基金(NL),退伍军人管理局BLR&D优异回顾1 I01 BX00012601(DM)和肌肉骨骼移植基金会青年科学家奖(FP)。

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Medical grade ester terminated poly (ε-caprolactone), granule form (MW = 110,000) Lactel Absorbable Polymers Custom synthesized polymer to desired molecular weight
1,1,1,3,3,3-hexafluoro-2-propanol Sigma-Aldrich 105228 Solvent for PCL polymer
18G x 1 1/2"bevel needle BD Medical 305196
Remote Infuse/Withdraw Programmable Syringe Pump Harvard Apparatus 702101
VersaLaser VLS2.30 Laser Engraver Microgeo USA VLS2.30
Expanded Plasma Cleaner 115V Harrick Plasma PDC-001 Plasma etch just prior to collagen coating for surface modification
PureCol  Collagen Standard Solution, 3 mg/ml Advanced Biomatrix 5015-A Mix 8:1:2.5 solution of PureCol, 10x PBS, 0.1N NaOH 1:9 in 1x PBS
Suture, 5-0 Vicryl Henry Schein 1086471
Suture, 4-0 Vicryl Henry Schein 6540072
Sharp-pointed Dissecting Scissors (Straight; 4.5 inch) Fisher Scientific 8940
Buphrenorphine hydrochloride Sigma-Aldrich B9275 Use 0.03 mg/kg for both intra- and post-operatively for pain control
Ampicillin, injectable Henry Schein 1185678 Use 25 mg/kg subcutaneously during the procedure
K-wire, 1.6 mm Spectrum Surgical SI040062
Keith Needle, Straight 1 1/2" Delasco Dermatology Lab & Supply KE-112
Immunocal Decalcifying Solution Fisher Scientific NC9491030
Opticryl Acrylic Resin Bone Cement (PMMA) (Monomer and polymer) US Dental Depot OPTICRYL 100410 
Instron Model 5564 Tensile Testing Machine Instron 5564 Any comparable tensile testing apparatus is suitable

Referências

  1. Fetto, J. F., Marshall, J. L. The natural history and diagnosis of anterior cruciate ligament insufficiency. Clin Orthop Relat Res. (147), 29-38 (1980).
  2. Kim, Y. M., Lee, C. A., Matava, M. J. Clinical results of arthroscopic single-bundle transtibial posterior cruciate ligament reconstruction: a systematic review. Am J Sports Med. 39 (2), 425-434 (2011).
  3. Andersson, C., Odensten, M., Gillquist, J. Knee function after surgical or nonsurgical treatment of acute rupture of the anterior cruciate ligament: a randomized study with a long-term follow-up period. Clin Orthop Relat Res. (264), 255-263 (1991).
  4. Klimkiewicz, J. J., Petrie, R. S., Harner, C. D. Surgical treatment of combined injury to anterior cruciate ligament, posterior cruciate ligament, and medial structures. Clin Sports Med. 19 (3), 479-492 (2000).
  5. Petrigliano, F. A., McAllister, D. R., Wu, B. M. Tissue engineering for anterior cruciate ligament reconstruction: a review of current strategies. Arthroscopy. 22 (4), 441-451 (2006).
  6. Groot, J. H., et al. Use of porous polyurethanes for meniscal reconstruction and meniscal prostheses. Biomaterials. 17 (2), 163-173 (1996).
  7. Leong, N. L., Petrigliano, F. A., McAllister, D. R. Current tissue engineering strategies in anterior cruciate ligament reconstruction. J Biomed Mater Res A. 102 (5), 1614-1624 (2014).
  8. Duling, R. R., Dupaix, R. B., Katsube, N., Lannutti, J. Mechanical characterization of electrospun polycaprolactone (PCL): a potential scaffold for tissue engineering. J Biomech Eng. 130 (1), 011006 (2008).
  9. Shao, Z., et al. Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo. Biomaterials. 33 (12), 3375-3387 (2012).
  10. Tillman, B. W., et al. The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomaterials. 30 (4), 583-588 (2009).
  11. Wise, S. G., et al. A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomater. 7 (1), 295-303 (2011).
  12. Vargel, I., Korkusuz, P., Menceloğlu, Y. Z., Pişkin, E. In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J Biomed Mater Res B Appl Biomater. 81 (2), 530-543 (2007).
  13. Cao, H., McHugh, K., Chew, S. Y., Anderson, J. M. The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction. J Biomed Mater Res A. 93 (3), 1151-1159 (2010).
  14. Joshi, V. S., Lei, N. Y., Walthers, C. M., Wu, B., Dunn, J. C. Macroporosity enhances vascularization of electrospun scaffolds. J Surg Res. 183 (1), 18-26 (2013).
  15. Pham, Q. P., Sharma, U., Mikos, A. G. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules. 7 (10), 2796-2805 (2006).
  16. Vaz, C. M., van Tuijl, S., Bouten, C. V., Baaijens, F. P. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater. 1 (5), 575-582 (2005).
  17. Kawamura, S., Ying, L., Kim, H. J., Dynybil, C., Rodeo, S. A. Macrophages accumulate in the early phase of tendon-bone healing. J Orthop Res. 23 (6), 1425-1432 (2005).
  18. Hays, P. L., et al. The role of macrophages in early healing of a tendon graft in a bone tunnel. J Bone Joint Surg Am. 90 (3), 565-579 (2008).
  19. Dagher, E., et al. Immobilization modulates macrophage accumulation in tendon-bone healing. Clin Orthop Relat Res. 467 (1), 281-287 (2009).
  20. Bedi, A., et al. Effect of early and delayed mechanical loading on tendon-to-bone healing after anterior cruciate ligament reconstruction. J Bone Joint Surg Am. 92 (14), 2387-2401 (2010).
  21. Bedi, A., Kawamura, S., Ying, L., Rodeo, S. A. Differences in tendon graft healing between the intra-articular and extra-articular ends of a bone tunnel. HSS J. 5 (1), 51-57 (2009).
  22. Fu, S. C., et al. Effect of graft tensioning on mechanical restoration in a rat model of anterior cruciate ligament reconstruction using free tendon graft. Knee Surg Sports Traumatol Arthrosc. 21 (5), 1226-1233 (2013).
  23. Fan, H., Liu, H., Wong, E. J., Toh, S. L., Goh, J. C. In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials. 29 (23), 3324-3337 (2008).
  24. Landis, J. R., Koch, G. G. The measurement of observer agreement for categorical data. Biometrics. 33 (1), 159-174 (1977).
  25. Joshi, S. M., Mastrangelo, A. N., Magarian, E. M., Fleming, B. C., Murray, M. M. Collagen-platelet composite enhances biomechanical and histologic healing of the porcine anterior cruciate ligament. Am J Sports Med. 37 (12), 2401-2410 (2009).
  26. Leong, N. L., et al. In vitro and in vivo evaluation of heparin mediated growth factor release from tissue-engineered constructs for anterior cruciate ligament reconstruction. J Orthop Res. 10, (2014).
  27. Seo, Y. K., et al. Increase in cell migration and angiogenesis in a composite silk scaffold for tissue-engineered ligaments. J Orthop Res. 27 (4), 495-503 (2009).
  28. Freeman, J. W., Woods, M. D., Laurencin, C. T. Tissue engineering of the anterior cruciate ligament using a braid-twist scaffold design. J Biomech. 40 (9), 2029-2036 (2007).
  29. Bashur, C. A., Shaffer, R. D., Dahlgren, L. A., Guelcher, S. A., Goldstein, A. S. Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells. Tissue Eng Part A. 15 (9), 2435-2445 (2009).
  30. Dash, T. K., Konkimalla, V. B. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J Control Release. 158 (1), 15-33 (2012).
  31. Yoshimoto, H., Shin, Y. M., Terai, H., Vacanti, J. P. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 24 (12), 2077-2082 (2003).
  32. Xu, Y., Ao, Y. F. Histological and biomechanical studies of inter-strand healing in four-strand autograft anterior cruciate ligament reconstruction in a rabbit model. Knee Surg Sports Traumatol Arthrosc. 17 (7), 770-777 (2009).
  33. Shino, K., et al. Replacement of the anterior cruciate ligament by an allogeneic tendon graft. An experimental study in the dog. J Bone Joint Surg Br. 66 (5), 672-681 (1984).
  34. Stasiak, M. E., et al. A novel device to apply controlled flexion and extension to the rat knee following anterior cruciate ligament reconstruction. J Biomech Eng. 134 (4), 041008 (2012).
  35. Brophy, R. H., et al. Effect of short-duration low-magnitude cyclic loading versus immobilization on tendon-bone healing after ACL reconstruction in a rat model. J Bone Joint Surg Am. 93 (4), 381-393 (2011).

Play Video

Citar este artigo
Leong, N. L., Kabir, N., Arshi, A., Nazemi, A., Wu, B. M., McAllister, D. R., Petrigliano, F. A. Athymic Rat Model for Evaluation of Engineered Anterior Cruciate Ligament Grafts. J. Vis. Exp. (97), e52797, doi:10.3791/52797 (2015).

View Video