Summary

珠嫁接到发展鸡胚四肢识别信号转导途径影响基因表达

Published: January 17, 2016
doi:

Summary

By grafting beads soaked in growth factors or specific inhibitors of signaling pathways into developing embryos it is possible to directly test their effects in vivo. In this protocol beads are grafted into the limb bud to determine the effects of these molecules on gene expression and signal transduction.

Abstract

使用鸡胚能够直接测试要么生长因子或信号对基因表达和活化的信号转导途径途径的特异性抑制剂的效果。这种技术允许信号分子在特定的时间精确定义的发育阶段的交付。在此之后的胚胎可以收获和基因表达研究,例如,通过原位杂交 ,或在激活与免疫染色观察到的信号转导途径。

在浸泡在FGF18这个视频肝素珠或AG 1-X2珠浸泡在U0126,MEK抑制剂,被嫁接到蛋内的肢芽。这表明,FGF18诱导的MyoD和ERK磷酸化和内源性和FGF18诱导MyoD的表达的表达是通过U0126抑制。珠浸泡在一视黄酸拮抗剂可通过FGF18增强过早MyoD的诱导。

这种方法可以是我们编与各种不同的生长因子和抑制剂和很容易适应在发育中的胚胎等组织。

Introduction

鸡胚胎已经很多年1提供了有力的发展工具的研究。他们的一个最有用特征是,它们相对容易操纵。外部发展使得能够打开蛋访问胚胎并执行各种微操作包括的例子,如用于研究细胞命运2,3经典鹌鹑小鸡嵌合体系统,逆转录病毒为过度表达在特定组织的注射发展4,5-期间和外植体培养,以确定发育信号源6。最近嵌合体与表达GFP的转基因鸡线移植未标记的主机之间产生表明,传统的嫁接,转基因的组合可以提供重要的见解发展7,8。

与禽流胚胎可以被操纵的方便性使它成为一个很好的模型来研究肢体发展9。具体生长因子开发四肢体内的应用一直在查明改变肢体图案10,11,并继续提供深入了解这个过程中12个因素 。这种方法也被用于研究该调节肌肉发展的因素,并已发现对于许多信号,诸如Wnts 13,骨形态发生蛋白14和HGF 15的作用。

最近这种技术被用于研究在肢芽控制生肌基因表达的信号,并表明,FGF18和视黄酸之间的相互作用可以控制的MyoD表达式16的定时。使用了可加载到珠,然后直接移植到在限定的发育阶段特定的组织的生长因子和小分子的组合提供机会开发期间进行干预,在几乎任何时间和区域。这已被用来INVEstigate许多过程,包括体节图案17,18,神经特19,神经嵴迁移20和轴延伸21。

在这里,我们描述了嫁接珠浸泡在两种生长因子或抑制剂来发展鸡四肢的方法。这已被使用的肌肉特异性基因表达分析用原位杂交技术来确定肌形成这些信号的影响。我们描述了使用肝素浸渍珠,其中用于生长因子,或为小的疏水性分子AG 1-X2珠如视黄酸或特定信号传导途径的小分子抑制剂的移植物。然而,其他的珠子也可已被用于递送二者的FGFs 22和Shh 23。

Protocol

伦理声明:所有这些实验遵循动物护理和诺丁汉大学的道德准则。 1.准备肝素珠的嫁接在使用前在PBS彻底冲洗肝素珠。注意:珠可以被存储在4℃下作为在PBS浆料。 从股票与20微升吸管入1毫升滴的PBS删除它们选择珠嫁接。然后用微量设置为2微升转移珠串成的PBS在3cm的培养皿20微升下降。选择基于尺寸珠和,使用立体解剖显微镜,具有P2枪头传送所选?…

Representative Results

在HH阶段21 MyoD的不表达在显影肢成肌细胞虽然染色所用的显影体节(图1A)的肌节中可以看出。 图1B显示了 原位杂交 MyoD的6小时以下的FGF18珠移植物。的MyoD被诱导成肌细胞的附近到胎圈而没有在对侧肢体无表达。共接枝浸泡在U0126珠,MEK,块FGF18诱导MyoD的( 图1C)的特异性抑制剂。同样嫁接U0126珠在HH阶段21,寻找MyoD基因表达后的24小时减少MyoD的内源性?…

Discussion

使用直接应用到发育组织卵珠移植物是一个功能强大的工具的开发给予无双控制在它们所应用的发育阶段和暴露的持续时间期间对解剖的生长因子信号的作用。

珠为每个类型的分子的选择是重要的。小的疏水性分子,如这里所描述的抑制剂和视黄酸,通常很好地结合衍生AG 1-X2珠虽然它需要测试的有效性的各缓蚀剂对这些珠子凭经验。类似地,对于生长因子,可能有必要以测?…

Declarações

The authors have nothing to disclose.

Acknowledgements

This work was partly funded by a University of Nottingham Early Career award to DS. RM is funded by the Higher Committee for Education Development of Iraq.

Materials

Heparin acrylic beads Sigma H5263 The acrylic-heparin beads used have been discontinued. However a replacement product is available, Heparin agarose beads, cat no H6508. These are transparent so harder to work with but can be stained with phenol red in the same way as AG 1-X2 beads,
AG 1-X2 beads Bio-Rad 140-1231
Affi Gel blue beads Bio-Rad 153-7301; 153-7302 These beads have been used with a range of growth factors including Shh and FGFs and can be used to replace heparin beads
FGF18 Peprotech 100-28 Resuspend in PBS with 0/1% BSA, prepare single use aliquots of 0.5-1ul and store at -80°C. Batches and suppliers can vary so different concentrations should be tested to determine an effective dose.
U0126 Cell Signalling 9903 Make to 20mM stock in DMSO and store in single use aliquots at -80°C. Protect from light.
BMS-493 Tocris Biosciences 3509 Resuspend in DMSO and store in single use aliquots at -80°C. Protect from light.
Black Indian ink Windsor and Newton 5012572003384 (30ml) While alternatives to this product are available care should be taken as some inks are toxic to embryos
Tungsten wire, 0.1mm dia. 99.95% Alfa Aesar 10404
Penicillin / streptomycin Sigma P0781 Dilute 100X in PBS/ink and PBS/FCS

Referências

  1. Davey, M. G., Tickle, C. The chicken as a model for embryonic development. Cytogenetic Genome Research. 117, 231-239 (2007).
  2. Le Douarin, N. The Nogent Institute–50 years of embryology. International Journal of Developmental Biology. 49, 85-103 (2005).
  3. Le Douarin, N. M. The avian embryo as a model to study the development of the neural crest: a long and still ongoing story. Mechanisms of Development. 121, 1089-1102 (2004).
  4. Bell, E., Brickell, P. Replication-competent retroviral vectors for expressing genes in avian cells in vitro and in vivo. Molecular Biotechnology. 7, 289-298 (1997).
  5. Abu-Elmagd, M., et al. Wnt/Lef1 signaling acts via Pitx2 to regulate somite myogenesis. Biologia do Desenvolvimento. 337, 211-219 (2010).
  6. Munsterberg, A. E., Lassar, A. B. Combinatorial signals from the neural tube, floor plate and notochord induce myogenic bHLH gene expression in the somite. Development. 121, 651-660 (1995).
  7. McGrew, M. J., et al. Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Reports. 5, 728-733 (2004).
  8. Valasek, P., et al. Cellular and molecular investigations into the development of the pectoral girdle. Biologia do Desenvolvimento. 357, 108-116 (2011).
  9. Tickle, C. The contribution of chicken embryology to the understanding of vertebrate limb development. Mechanisms of Development. 121, 1019-1029 (2004).
  10. Riddle, R. D., Johnson, R. L., Laufer, E., Tabin, C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell. 75, 1401-1416 (1993).
  11. Tickle, C., Alberts, B., Wolpert, L., Lee, J. Local application of retinoic acid to the limb bond mimics the action of the polarizing region. Nature. 296, 564-566 (1982).
  12. Rosello-Diez, A., Torres, M. Regulative patterning in limb bud transplants is induced by distalizing activity of apical ectodermal ridge signals on host limb cells. Developmental Dynamics. 240, 1203-1211 (2011).
  13. Anakwe, K., et al. Wnt signalling regulates myogenic differentiation in the developing avian wing. Development. 130, 3503-3514 (2003).
  14. Amthor, H., Christ, B., Weil, M., Patel, K. The importance of timing differentiation during limb muscle development. Current Biology. 8, 642-652 (1998).
  15. Brand-Saberi, B., Muller, T. S., Wilting, J., Christ, B., Birchmeier, C. Scatter factor/hepatocyte growth factor (SF/HGF) induces emigration of myogenic cells at interlimb level in vivo. Biologia do Desenvolvimento. 179, 303-308 (1996).
  16. Mok, G. F., Cardenas, R., Anderton, H., Campbell, K. H. S., Sweetman, D. Interactions between FGF18 and retinoic acid regulate differentiation of chick embryo limb myoblasts. Biologia do Desenvolvimento. 396, 214-223 (2014).
  17. Abou-Elhamd, A., Cooper, O., Münsterberg, A. Klhl31 is associated with skeletal myogenesis and its expression is regulated by myogenic signals and Myf-5. Mechanisms of Development. , 126-852 (2009).
  18. Schmidt, M., Tanaka, M., Munsterberg, A. Expression of (beta)-catenin in the developing chick myotome is regulated by myogenic signals. Development. 127, 4105-4113 (2000).
  19. Stavridis, M. P., Lunn, J. S., Collins, B. J., Storey, K. G. A discrete period of FGF-induced Erk1/2 signalling is required for vertebrate neural specification. Development. 134, 2889-2894 (2007).
  20. Martinez-Morales, P. L., et al. FGF and retinoic acid activity gradients control the timing of neural crest cell emigration in the trunk. Journal of Cell Biology. 194, 489-503 (2011).
  21. Olivera-Martinez, I., Storey, K. G. Wnt signals provide a timing mechanism for the FGF-retinoid differentiation switch during vertebrate body axis extension. Development. 134, 2125-2135 (2007).
  22. Logan, M., Simon, H. G., Tabin, C. Differential regulation of T-box and homeobox transcription factors suggests roles in controlling chick limb-type identity. Development. 125, 2825-2835 (1998).
  23. Borycki, A. G., Mendham, L., Emerson, C. P. Control of somite patterning by Sonic hedgehog and its downstream signal response genes. Development. 125, 777-790 (1998).
  24. Sweetman, D., et al. FGF-4 signaling is involved in mir-206 expression in developing somites of chicken embryos. Developmental Dynamics. 235, 2185-2191 (2006).
  25. Chapman, S. C., Collignon, J., Schoenwolf, G. C., Lumsden, A. Improved method for chick whole-embryo culture using a filter paper carrier. Developmental Dynamics. 220, 284-289 (2001).
  26. Sweetman, D., Wagstaff, L., Cooper, O., Weijer, C., Münsterberg, A. The migration of paraxial and lateral plate mesoderm cells emerging from the late primitive streak is controlled by different Wnt signals. BMC Developmental Biology. 8, 63 (2008).
  27. Scott, B. B., Lois, C. Generation of tissue-specific transgenic birds with lentiviral vectors. Proceedings of the National Academy of Sciences of the U.S.A. 102, 16443-16447 (2005).
  28. Seidl, A. H., et al. Transgenic quail as a model for research in the avian nervous system: a comparative study of the auditory brainstem. Journal of Comparative Neurology. 521, 5-23 (2013).
check_url/pt/53342?article_type=t

Play Video

Citar este artigo
Mohammed, R. H., Sweetman, D. Grafting of Beads into Developing Chicken Embryo Limbs to Identify Signal Transduction Pathways Affecting Gene Expression. J. Vis. Exp. (107), e53342, doi:10.3791/53342 (2016).

View Video