Summary

成体マウスから洞房結節筋細胞の単離、培養、および機能解析のための方法

Published: October 23, 2016
doi:

Summary

方法は、パッチクランプ電気生理学やイメージング研究のための成体マウスから洞房結節筋細胞(のSAM)の単離のために実証されています。単離された細胞を直接使用することができ、またはそのような遺伝的にコードされたレポーターとして、関心対象のタンパク質の発現を可能にするために、培養物中に維持することができます。

Abstract

洞房結節筋細胞(SAMは)自発的な活動電位(APを)を生成することにより、ビートそれぞれの心を開始し、心臓の自然のペースメーカーとして機能します。これらのペースメーカーAPは多数の膜電流と細胞内カルシウムサイクリングの協調活動を反映しています。しかし、SAMの中で自発的なペースメーカー活性を駆動する正確なメカニズムは、とらえどころのないまま。急性孤立したSAMは、心臓ペースメーカーの分子的基礎を分析するための実験のための不可欠な準備です。しかし、不明瞭な解剖学、複雑な顕微解剖、および気難しい酵素消化条件は急性孤立したSAMの普及を妨げてきました。また、方法は、タンパク質発現の研究​​のためにSAMの長期培養を可能にするために、最近まで利用できませんでした。ここでは、成体マウスからのSAMの単離のためのステップバイステップのプロトコルおよびビデオデモンストレーションを提供しています。この方法はまた、in vitroおよびde expressiのための成体マウスのSAMを維持するために実証されていますアデノウイルス感染を介した外因性タンパク質の上。これらの方法を介して調製急性単離し、培養したSAMは、電気生理学とイメージング研究の多様に適しています。

Introduction

ペースメーカー、心臓の洞房結節における筋細胞(洞房筋は、「SAMは」)、各ハートビートを開始するために、心筋を介して伝播自発的な、リズミカルな活動電位(APを)を生成します。多くの種から急性単離されたSAMを用いた実験は、ペースメーカー活性の発生に寄与メカニズムの解明のために不可欠でした。 SAMは、形態、機能、およびタンパク質発現の観点から、心房と心室の心筋での対応と実質的に異なる専門性の高い心筋細胞です。 SAMの中の自発的なAPの顕著な特徴は次のAP 1,2をトリガーするしきい値に膜電位を駆動する拡張期に自発的な脱分極です。この「ペースメーカー電位」は、「おかしな電流」(I f)は 、T-およびL型カルシウム電流、およびナトリウム-カルシウム交換体CURRを含む多くの異なった膜電流の協調活性に依存します筋小胞体3,4からのCa 2+放出によって駆動されるENT(I NCX)、。

急性単離したマウスのSAMはペースメーキングの研究に不可欠な実験の準備ですが、マウスSANの不明瞭な解剖学と小さいサイズが微妙な顕微解剖と組み合わせた酵素的および機械を必要とするため、マウスからのSAMの単離は、採用する挑戦的な方法することができます細胞の解離は慎重な最適化が必要。

ここでは正常にパッチクランプ記録5-8のための成体マウスからのSAMを単離するために使用されているプロトコルの詳細なデモビデオを提供しています。我々の知る限りでは、他のソースから入手できるそのような視覚的なデモンストレーションではありません。また、新たな方法は、成体マウスからのSAMの単離された実証される遺伝的にエンコードされ、それによってタンパク質の導入を可能にする、数日間インビトロで維持することができアデノウイルス感染9を介してレポーター分子またはRNAi。

Protocol

全ての動物手順はコロラドアンシュッツメディカルキャンパスの大学の施設内動物管理使用委員会によって承認されたプロトコルに従って行われました。下記の標準プロトコルは、年齢の2-3ヶ月の雄のC57BL / 6Jマウスを使用して最適化されています。 1.実験の事前にソリューション株式と消耗品を準備します注:必要な機器および消耗品のための…

Representative Results

ここで説明するプロトコルは、以前に別のパッチクランプ研究5-8種々のに適している成体マウスから自発的に活性のSAMを単離するために使用されてきました。また、プロトコルは、最大1週間培養物中に維持することができる単離されたSAMを可能にします。培養細胞への遺伝子導入は、アデノウイルス感染9を介して達成することができます。このセク?…

Discussion

本論文では、成体マウスから完全に分化洞房結節筋細胞の単離および培養のための詳細なプロトコルを提示します。分離プロトコルは確実に即時の電気生理学的解析やその後の培養のいずれかに適した自然発生的にアクティブなマウスのSAMを生成します。同様のプロトコル(例えば、11,12,10,13-17参考文献を参照)、他の多くのグループによって報告されています。しかし、in vitroで…

Declarações

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Christian Rickert for critical reading of the manuscript. This work was supported by a grant from the National Heart Lung and Blood Institute (R01-HL088427) to CP. EJS was supported by 5T32-AG000279 from the National Institute on Aging. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Materials

Sylgruard/Elastomer Kit Dow Corning 184 SIL ELAST KIT 0.5KG
Borosilicate 9" pasteur pipettes Fisher Scientific 13-678-20C
Small, round bottomed culture tubes Fisher Scientific 352059
Large, round bottomed culture tubes Corning 14-959-11B
Elastase Worthington Biochemical LS002279
Liberase TM Roche 5401119001  Tissue dissociation solution
Heparin SAGENT Pharmaceuticals  NDC 25021-400-10
Mouse Laminin Corning CB-354232
12 mm round glass coverslips Fisher  12-545-80
24-well culture plate Fisher 08-772-1
Ad-mCherry Vector Biolabs 1767
Ad-eGFP Vector Biolabs 1060
Plastic, disposable transfer pipette Fisher Scientific
Micro scissors Fisher Scientific 17-467-496
Dumont #4 Forceps Roboz Instruments RS-4904
Tissue Forceps Roboz Instruments RS-8164
Dissecting Iris Scissors WPI, Inc. 501264
Dissecting Pins Fine Science Tools 26002-20
NaCl Sigma 71376
KCl Sigma 60128
KH2PO4 Sigma 60353
HEPES Sigma 54457
glucose Sigma G0350500
MgCl2 Sigma M8266
CaCl2 Sigma C1016
taurine Sigma T0625
BSA Sigma A2153
K-glutamate Sigma G1501
K-aspartate Sigma A6558
MgSO4 Sigma M7506
creatine Sigma C0780
EGTA Sigma E3889
Mg-ATP Sigma A9187
Amphotericin-B Fisher Scientific 1397-89-3
Isoproterenol Calbiochem 420355
Media199 Sigma M4530
2,3-butanedione monoxime (BDM) Sigma B0753
Fetal Bovine Serum (FBS) Sigma SH30071
Bovine Serum Albumin (BSA) Sigma A5611
Insulin   Sigma I3146
Transferrin Sigma I3146
Selenium Sigma I3146
Penicillin GE Healthcare SV30010
Streptomycin Hyclone SV30010

Referências

  1. Irisawa, H., Noma, A. Pacemaker currents in mammalian nodal cells. J Mol Cell Cardiol. 16 (9), 777-781 (1984).
  2. DiFrancesco, D. Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol. 55, 455-472 (1993).
  3. Mangoni, M., Nargeot, J. Genesis and regulation of the heart automaticity. Physiol Rev. 88 (3), 919-982 (2008).
  4. Lakatta, E. G., DiFrancesco, D. What keeps us ticking: a funny current, a calcium clock, or both. J Mol Cell Cardiol. 47 (2), 157-170 (2009).
  5. Liao, Z., Lockhead, D., Larson, E., Proenza, C. Phosphorylation and modulation of hyperpolarization-activated HCN4 channels by protein kinase A in the mouse sinoatrial node. J Gen Physiol. 136 (3), 247-258 (2010).
  6. Liao, Z., St Clair, J. R., Larson, E. D., Proenza, C. Myristoylated peptides potentiate the funny current (I(f)) in sinoatrial myocytes. Channels. 5 (2), 115-119 (2011).
  7. Larson, E. D., Clair, J. R. S., Sumner, W. A., Bannister, R. A., Proenza, C. Depressed pacemaker activity of sinoatrial node myocytes contributes to the age-dependent decline in maximum heart rate. Proc Nat Acad Sci. 110 (44), 18011-18016 (2013).
  8. St. Clair, J. R., Liao, Z., Larson, E. D., Proenza, C. PKA-independent activation of I(f) by cAMP in mouse sinoatrial myocytes. Channels. 7 (4), 318-321 (2013).
  9. St. Clair, J. R., Sharpe, E. J., Proenza, C. Culture and adenoviral infection of sinoatrial node myocytes from adult mice. Am J Physiol Heart Circ Physiol. , (2015).
  10. Clark, R. B., Mangoni, M. E., Lueger, A., Couette, B., Nargeot, J., Giles, W. R. A rapidly activating delayed rectifier K+ current regulates pacemaker activity in adult mouse sinoatrial node cells. Am J Physiol Heart Circ Physiol. 286 (5), H1757-H1766 (2004).
  11. Mangoni, M., Nargeot, J. Properties of the hyperpolarization-activated current (I(f)) in isolated mouse sino-atrial cells. Cardiovasc Res. 52 (1), 51-64 (2001).
  12. Cho, H. S., Takano, M., Noma, A. The electrophysiological properties of spontaneously beating pacemaker cells isolated from mouse sinoatrial node. J Physiol. 550 (Pt 1), 169-180 (2003).
  13. Rose, R. A., Lomax, A. E., Kondo, C. S., Anand-Srivastava, M. B., Giles, W. R. Effects of C-type natriuretic peptide on ionic currents in mouse sinoatrial node: a role for the NPR-C receptor. Am J Physiol Heart Circ Physiol. 286 (5), H1970-H1977 (2004).
  14. Rose, R. A., Kabir, M. G., Backx, P. H. Altered Heart Rate and Sinoatrial Node Function in Mice Lacking the cAMP Regulator Phosphoinositide 3-Kinase-gamma. Circ Res. 101 (12), 1274-1282 (2007).
  15. Hua, R., Adamczyk, A., Robbins, C., Ray, G., Rose, R. Distinct patterns of constitutive phosphodiesterase activity in mouse sinoatrial node and atrial myocardium. PloS ONE. 7 (10), e47652 (2012).
  16. Groenke, S., Larson, E. D., et al. Complete atrial-specific knockout of sodium-calcium exchange eliminates sinoatrial node pacemaker activity. PloS ONE. 8 (11), e81633 (2013).
  17. Torrente, A. G., Zhang, R., et al. Burst pacemaker activity of the sinoatrial node in sodium-calcium exchanger knockout mice. Proc Nat Acad Sci USA. 112 (31), 9769-9774 (2015).
  18. Denyer, J. C., Brown, H. F. Rabbit sino-atrial node cells: isolation and electrophysiological properties. J Physiol. 428 (1), 405-424 (1990).
  19. Thum, T., Borlak, J. Butanedione monoxime increases the viability and yield of adult cardiomyocytes in primary cultures. Cardiovasc Toxicol. 1 (1), 61-72 (2001).
  20. Borlak, J., Zwadlo, C. The myosin ATPase inhibitor 2,3-butanedione monoxime dictates transcriptional activation of ion channels and Ca(2+)-handling proteins. Molec Pharmacol. 66 (3), 708-717 (2004).
check_url/pt/54555?article_type=t

Play Video

Citar este artigo
Sharpe, E. J., St. Clair, J. R., Proenza, C. Methods for the Isolation, Culture, and Functional Characterization of Sinoatrial Node Myocytes from Adult Mice. J. Vis. Exp. (116), e54555, doi:10.3791/54555 (2016).

View Video