Summary

腺病毒报告系统 TGF β/Smad3 信号通路的活体细胞成像

Published: July 30, 2018
doi:

Summary

在这里, 我们提出了一个使用腺病毒记者系统的 TGF-β/Smad3 信号活动的活细胞成像协议。该系统实时跟踪转录活性, 可用于体外和活体动物模型中的单细胞.

Abstract

转化生长因子β (TGF) 信号调节细胞稳态所需的许多重要功能, 在许多疾病, 包括癌症中普遍发现抗原。TGF β在晚期癌症进展中与转移有强烈牵连, 激活了迁移和侵袭性肿瘤细胞的一个子集。目前的信号通路分析方法侧重于端点模型, 通常试图测量生物事件的信号, 不反映疾病的渐进性质。在这里, 我们展示了一个新的腺病毒记者系统特定的 TGF-β/Smad3 信号通路, 可以检测转录激活的活细胞。利用Ad CAGA12-Td-汤姆记者, 我们可以24 小时内达到 100% MDA-MB-231 细胞感染率。使用荧光记者可以实时地对活单细胞进行成像, 直接识别转录活性细胞。用 TGF β刺激感染细胞, 只显示转录活性和参与特定生物学功能的细胞子集。这种方法允许在单个细胞水平高特异性和敏感性, 以增强对与 TGF β信号的生物学功能的认识。Smad3 转录活动也可以在体内实时报告通过应用一个Ad CAGA12-卢克记者。CAGA12-卢克可以用与传统稳定转染的荧光素酶细胞系相同的方式来测量。Smad3在体内植入细胞的转录活性可以通过常规的 IVIS 影像分析, 并在肿瘤进展过程中进行监测, 为 TGF β信号通路的动力学提供独特的洞察力。我们的协议描述了一个有利的报告传递系统, 允许快速高通量成像的活细胞信号通路的体外体内。这种方法可以扩展到一系列基于图像的检测, 并呈现为基础生物学和治疗发展的敏感和可重复的方法。

Introduction

转化生长因子β (TGF β) 是人类发展中的一项重要的细胞因子, 它通过由 II 型和 I 型受体1组成的 heterodimeric 复合物发出信号。对 II. 型受体的结合导致 I 型受体的招募和磷酸化, 进而 phosphorylates 下游 Smad2/3 蛋白2,3。这些活化 Smad2/3 蛋白绑定到 Smad4, 形成一个复杂的 translocates 进入细胞核和调控基因转录4。在恒定的情况下 TGF β/Smad 信号被严密地调控;然而, 在许多疾病中, 信号通路被解除管制, 并且经常抗原导致疾病的进展5,6,7。最近的研究表明, 细胞对 TGF β的反应是异质的, TGF β/Smad 活性细胞的亚群是以时间依赖性的方式8,9负责生物功能。TGF β/Smad 信号的常见细胞分析涉及使用固定端点化验, 只提供细胞活动的快照, 而且通常定量平均 TGF β/Smad 效应10。然而, 这些方法可能不能准确地反映 TGF-β/Smad 信号在疾病进展过程中生理状态下的分子行为。基于图像的活细胞分析捕捉细胞和生物过程的动态, 既具有空间又有时间的理解。

我们的目标是开发一种灵敏的高通量方法用于活细胞成像的 TGF β/Smad 信号使用腺病毒试剂。在这里, 我们感染了人类乳腺癌细胞系 MDA-MB-231 与腺病毒表达 Smad3 CAGA 的主题结合序列和荧光素酶 (卢克) 或 td-番茄 (td-汤姆) 报告基因。腺病毒报告系统为质粒的引入提供了一种快速、廉价的方法, 可导致癌细胞株感染率100%。腺病毒报告系统也已成功地应用于细胞系难以染与常规质粒11。在本协议中, 我们将描述一个可重现和无创的过程, 以实现 TGFβ/Smad 信号通路的活体细胞成像在体内体外

Protocol

所有动物实验都是由墨尔本大学动物伦理委员会批准的。 注: 腺病毒载体的序列, 构造和生成协议 pad-巨细胞病毒-Td-汤姆, pad cmv-GFP和 pad-CAGA12-卢克/Td-汤姆以前被描述了11,12, 13。所有的向量都是商用的。 1. 使用50% 组织培养感染剂量的病毒效价测定 (TCID50</s…

Representative Results

活体单细胞成像的体外研究 为了准确评估 TGF-β/Smad 信号在单细胞中的活化作用, 使用腺病毒试剂, 首先确定每一个细胞系的最佳感染多样性 (语言) 是很重要的。当100% 的细胞对腺病毒感染有阳性反应时, 不存在病变或细胞毒性作用, 就确定了最佳的教学语言。为了确定这一点, 我们使用了一个组成性活跃的Ad-巨细胞病毒-T…

Discussion

我们开发了一种技术, 允许实时成像的 TGF-β/Smad3 信号在单个活细胞。利用这一新方法, 我们以前已经确定了一个子群体的细胞与动态 TGF-β/Smad3 转录活动, 与增强入侵和迁移8。该方法改进了传统的 TGF β信号检测, 如 Smad3 磷酸化和 TGF β靶向基因表达的西方印迹, 通过捕获肿瘤人群中 TGF-β/Smad3 信号的异质性, 突出单细胞生物学的重要性。此外, 单细胞成像的替代方法, 如核易位可以?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家卫生和医学研究理事会 (澳洲) 给 H-爵士的赠款的支持。TMBW 是澳大利亚研究生奖的接受者澳大利亚政府和 Ann 亨德森的顶部奖学金从澳大利亚扶轮健康与扶轮 Templestowe 和用餐的治疗。

Materials

DMEM ThermoFisher 1881024 Warm in 37 °C waterbath before use
Foetal Bovine Serum Scientifix Life FBS500-S Heat inactivated before use
Recombinant Human TGF-β1 PEPROTECH 100-21 Aliquot in DDW to make final concentration at 10 mg/mL
Hoechst-33258 Tocris Bioscience 5117 Dilute in to PBS to make final concentration at 1 μL/mL
Luciferase Reporter Assay Kit Promega 197897 Dilute 5x in PBS before use
Luminometer Promega 9100-002
Phase contrast fluorescence microscopy OLYMPUS IX50
Centrifuge eppendorf 5810 R
VivoGl Luciferin Promega P1041
IVIS Lumina III In Vivo Imaging System PerkinElmer CLS136334
0.5% Trypsin-EDTA (10x) ThermoFisher 15400-054 Diltue to 0.05% (1x) in PBS
Cell Culture Lysis 5x Reagent Promega E153A Dilute to 1x in DDW
10% Formalin Sigma-Aldrich F5554-4L
HEK 293A ThermoFisher R70507
MDA-MB-231 ATCC CRM-HTB-26
PRKDC-SCID Animal Resources Centre SCIDF6
Matrigel Corning 354234
Isoflurane Zoetis 26675-46-7
Ethanol Chem-supply EA043-10L-P
Refresh Night Time Allergan 1750D Lubricating Eye Ointment
Solution Composition
Phosphate-Buffered Saline (PBS) NaH2PO4.2H2O (4 mM); NaHPO4 (16 mM); NaCl (0.12M)
FBS-DMEM  5% heat inactivated FBS; 10 μg/mL penicillin; 100 μg/mL streptomycin

Referências

  1. Massague, J., Like, B. Cellular receptors for type beta transforming growth factor. Ligand binding and affinity labeling in human and rodent cell lines. The Journal of biological chemistry. 260, 2636-2645 (1985).
  2. Xu, L., Chen, Y. G., Massague, J. The nuclear import function of Smad2 is masked by SARA and unmasked by TGFbeta-dependent phosphorylation. Nature Cell Biology. 2, 559-562 (2000).
  3. Massague, J. TGFbeta signaling in context. Nature reviews. Molecular cell biology. 13, 616-630 (2012).
  4. Massague, J., Seoane, J., Wotton, D. Smad transcription factors. Genes Development. 19, 2783-2810 (2005).
  5. Blobe, G. C., Schiemann, W. P., Lodish, H. F. Role of transforming growth factor beta in human disease. The New England journal of medicine. , 1350-1358 (2000).
  6. Zhu, H. J., Burgess, A. W. Regulation of transforming growth factor-beta signaling. Molecular cell biology research communications : MCBRC. 4, 321-330 (2001).
  7. Massagué, J. TGFβ in Cancer. Cell. 134, 215-230 (2008).
  8. Luwor, R. B., et al. Single live cell TGF-beta signaling imaging: breast cancer cell motility and migration is driven by sub-populations of cells with dynamic TGF-beta-Smad3 activity. Molecular cancer. 14, 50 (2015).
  9. Clarke, D. C., Liu, X. Decoding the quantitative nature of TGF-beta/Smad signaling. Trends in Cell Biol.ogy. 18, 430-442 (2008).
  10. Zhao, R., Li, N., Xu, J., Li, W., Fang, X. Quantitative single-molecule study of TGF-beta/Smad signaling. Acta Biochimica et Biophysica Sinica (Shanghai). 50, 51-59 (2017).
  11. Luwor, R. B., et al. New reagents for improved in vitro and in vivo examination of TGF-beta signalling. Growth factors. 29, 211-218 (2011).
  12. Dennler, S., et al. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 17, 3091-3100 (1998).
  13. Luwor, R. B., et al. Targeting Stat3 and Smad7 to restore TGF-beta cytostatic regulation of tumor cells in vitro and in vivo. Oncogene. 32, 2433-2441 (2013).
  14. Reed, L. J., Muench, H. A Simple Method of Estimating Fifty Per Cent Endpoints. American Journal of Epidemiology. 27, 493-497 (1938).
  15. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature methods. 9, 671-675 (2012).
  16. Dennler, S., Prunier, C., Ferrand, N., Gauthier, J. M., Atfi, A. c-Jun inhibits transforming growth factor beta-mediated transcription by repressing Smad3 transcriptional activity. The Journal of biological chemistry. 275, 28858-28865 (2000).
  17. Fink, S. P., Mikkola, D., Willson, J. K., Markowitz, S. TGF-beta-induced nuclear localization of Smad2 and Smad3 in Smad4 null cancer cell lines. Oncogene. 22, 1317-1323 (2003).
  18. Zinn, K. R., et al. Noninvasive bioluminescence imaging in small animals. ILAR J. 49, 103-115 (2008).
  19. Kim, T. K., Eberwine, J. H. Mammalian cell transfection: the present and the future. Analytical and Bioanalytical Chemistry. 397, 3173-3178 (2010).
  20. Russell, W. C. Update on adenovirus and its vectors. Journal of General Virology. 81, 2573-2604 (2000).
  21. Lee, C. S., et al. Adenovirus-Mediated Gene Delivery: Potential Applications for Gene and Cell-Based Therapies in the New Era of Personalized Medicine. Genes & Diseases. 4, 43-63 (2017).
  22. Wang, I. I., Huang, I. I. Adenovirus technology for gene manipulation and functional studies. Drug Discovery Today. 5, 10-16 (2000).
  23. Kochanek, S., et al. A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proceedings of the National Academy of Sciences of the United States of America. 93, 5731-5736 (1996).
  24. Wang, Q., Finer, M. H. Second-generation adenovirus vectors. Nature Medicine. 2, 714-716 (1996).
  25. Durham, H. D., et al. Toxicity of replication-defective adenoviral recombinants in dissociated cultures of nervous tissue. Experimental Neurology. 140, 14-20 (1996).
  26. MacKenzie, K. L., Hackett, N. R., Crystal, R. G., Moore, M. A. Adenoviral vector-mediated gene transfer to primitive human hematopoietic progenitor cells: assessment of transduction and toxicity in long-term culture. Blood. 96, 100-108 (2000).
  27. Zhang, W. W., Koch, P. E., Roth, J. A. Detection of wild-type contamination in a recombinant adenoviral preparation by PCR. Biotechniques. 18, 444-447 (1995).
  28. Choi, Y., Chang, J. Viral vectors for vaccine applications. Clinical and Experimental Vaccine Research. 2, 97-105 (2013).
  29. de Cassan, S. C., et al. The requirement for potent adjuvants to enhance the immunogenicity and protective efficacy of protein vaccines can be overcome by prior immunization with a recombinant adenovirus. Journal of immunology. 187, 2602-2616 (2011).
  30. Krasnykh, V. N., Mikheeva, G. V., Douglas, J. T., Curiel, D. T. Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism. Journal of Virology. 70, 6839-6846 (1996).
  31. Wickham, T. J., et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. Journal of Virology. 71, 8221-8229 (1997).
  32. Smith, F., Jacoby, D., Breakefield, X. O. Virus vectors for gene delivery to the nervous system. Restorative neurology and neuroscience. 8, 21-34 (1995).
  33. Zhou, F., et al. Nuclear receptor NR4A1 promotes breast cancer invasion and metastasis by activating TGF-beta signalling. Nature communications. 5, 3388 (2014).
check_url/pt/57926?article_type=t

Play Video

Citar este artigo
Chen, H., Ware, T. M., Iaria, J., Zhu, H. Live Cell Imaging of the TGF- β/Smad3 Signaling Pathway In Vitro and In Vivo Using an Adenovirus Reporter System. J. Vis. Exp. (137), e57926, doi:10.3791/57926 (2018).

View Video