Summary

一种可靠、可重复的可重复的大鼠部分股骨缺陷模型

Published: March 24, 2019
doi:

Summary

在体内, 哺乳动物的临界骨缺损模型是必不可少的研究愈合机制和骨科治疗。在这里, 我们介绍了一种方案, 以创建可重复的, 节段, 股骨缺损在大鼠稳定使用外固定。

Abstract

骨科研究在很大程度上依赖于动物模型来研究骨愈合的机制在体内, 以及研究新的治疗技术。临界大小的节段缺陷是具有挑战性的治疗临床, 研究工作可以受益于一个可靠的, 动态的小动物模型的节段股骨缺陷。在本研究中, 我们提出了一个优化的手术方案, 以一致和重现5毫米临界骨干缺损在大鼠股骨稳定与外部固定器。采用定制夹具对4根基什内尔电线进行了骨固定器切除术, 并采用合适的外固定装置进行了稳定。一个振荡骨锯被用来制造缺陷。单独植入胶原蛋白海绵或浸泡在 rhBMP-2 中的胶原蛋白海绵, 并使用 x 光片在12周内监测骨愈合情况。12周后, 对大鼠进行了牺牲, 并对切除和治疗股骨进行了组织学分析。骨缺损只含有胶原蛋白海绵导致不愈合, 而 Rbmp-2 治疗导致骨膜粘液和新的骨重塑形成。植入后动物恢复良好, 外固定成功地稳定了股骨缺损, 持续12周。这种简化的手术模式可以很容易地应用于研究骨愈合和测试新的骨科生物材料和再生疗法在体内

Introduction

骨科创伤手术的重点是治疗广泛的复杂骨折。由于周围肌肉和骨膜再生能力下降以及局部血管生成失败, 临床上证明很难治疗严重的过敏性骨缺损.现代治疗技术包括骨移植、延迟骨 (masquelet) 的手术固定、移植、骨移植、融合或截肢2,3,4。在大多数患者谁具有流动功能保存后, 他们的创伤, 功能良好的远端肢体, 肢体救助显然是一个更好的治疗方案5。这些抢救治疗往往需要在一个漫长的疗程分阶段的手术干预。一些作者认为, 外固定优于内固定为这些应用相比, 由于减少组织损伤在体内植入表面积, 并增加术后可调性固定器6。然而, 一项前瞻性的随机对照试验目前正在进行中, 以帮助澄清这种争议的内固定对外外固定严重开放骨折的胫骨7。不幸的是, 无论选择哪种治疗方法, 显著的并发症和故障率持续 8,9。对于节段性骨丢失, 外科医生必须面对构成重大挑战的节段性过敏性缺陷。节段缺损的矫正必须最大限度地稳定骨骼, 同时增强成骨过程10,11

由于关键大小的节段缺陷的临床重要性, 但体积较低, 有效、可重复的动物模型是必要的, 以使研究团队能够推进治疗技术并最终改善临床结果。研究人员需要研究哺乳动物动物模型中的体内生理愈合机制。虽然这种外固定模型已经存在12131415, 但我们希望为未经治疗的动物提供更可靠的不结合方法, 通过选择价格合理的固定器材料, 并概述了一个简单的手术协议, 便于应用于未来的研究。该方案的主要目的是建立一个可靠和可重复的模型, 为大鼠的关键过敏性缺损。通过评估大鼠股骨在12周内的稳定性和骨愈合情况, 对该手术进行了评估。次要目标包括: 使负担得起的模式尽可能具有成本效益, 简化手术方法和稳定, 并确保对动物的道德关怀。作者和研究小组对一系列不同的生物材料和潜在的再生疗法进行了初步实验, 以改善这种节段缺陷的愈合。

Protocol

本研究中使用的老鼠根据《动物安乐死 AVMA 准则: 2013年第16版》接受日常护理。威斯康星大学麦迪逊分校动物护理和使用机构委员会在项目开始前对这一实验方案进行了评估并批准。 1. 动物 使用超繁殖的 Sprague-Dawley 雄性大鼠, 重约350克。 2. 骨形态发生蛋白-2 (Rhmbp-2) 浸渍海绵支架的制备 注: 支架的准备工?…

Representative Results

在一名助理的帮助下, 一名外科医生在大约一小时内进行了手术。手术优化后, 术中和术后并发症大大减少, 使用夹具装置可确保大小一致 (5 x 3 x 3 mm) 和股骨缺损定位。从麻醉中恢复后, 大鼠立即处于流动状态, 似乎没有任何改变的行为模式;他们的步态并不像过敏, 他们似乎也没有被外部固定器打扰。 选择非螺纹 k 线的最近端引…

Discussion

骨科损伤的小动物模型, 如完整的骨折, 使研究, 探索成骨的机制和评估生物材料的治疗潜力20。本研究引入了由自定义外部固定器稳定的大鼠节段缺陷模型, 实验室和生物医学工程团队可以很容易地复制该模型, 以进一步研究承重骨合成骨修复。

此前在大鼠模型中使用临界大小缺陷的研究通常依赖于 2122、</sup…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家卫生研究院设备赠款1S10OD023666-01 的支持, 并通过威斯康星大学骨科和康复系以及医学和公共卫生学院提供了额外的支持。我们要感谢 UW 的 Carone 癌症中心支助赠款 P30 CA014520 和使用他们的小动物成像设施, 以及国家卫生研究院培训赠款 5T35OD011078-08 h. martin 的支持。我们还感谢迈克尔和玛丽·苏·香农对肌肉骨骼再生伙伴关系的支持。

Materials

0.9% Sterile Saline Baxter 2F7124 Used for irrigating wound and rehydration
10% Iodine/Povidone Carefusion 1215016 Used to prep skin
10% Neutral Buffered Formalin VWR 89370094 Used as fixative
1mm non-threaded kirschner wire DePuy Synthes VW1003.15 Sterilized, used for the most proximal pin
1mm threaded kirschner wire DePuy Synthes VW1005.15 Sterilized, used for the 3 most distal pin slots
2×2 gauze Covidien 4006130 Sterilized, used to prep skin and absorb blood
4-0 Vicryl Suture Ethicon 4015304 Used to close muscle and skin layers
4-40 x 0.25",18-8 stainless steel button head cap screws Generic External fixator assembly
4200 Cordless Driver Stryker OR-S-4200 Used to drill kirschner wires
4×4 gauze Covidien 1219158 Sterilized, used to absorb blood
70 % Ethanol Used to prep skin
Baytril Bayer Healthcare LLC, Animal health division 312.10010.3 Added to water as an antibiotic
Cefazolin Hikma Pharmaceuticals 8917156 Pre-op antibiotic
CleanCap Gaussia Luciferase mRNA (5moU) TriLink Biotechnologies L-7205 Modified mRNA encoding for Gaussia Luciferase, keep on ice during use
Coelenterazine native NanoLight Technology 303 Substrate for Guassia Luciferase, used to assess luciferase activity in vivo
Double antibiotic ointment Johnson & Johnson consumer Inc 8975432 Applied to pin sites post-op as wound care
Dual Cut Microblade Stryker 5400-003-410 Used to create 5mm defect in femur
Ethylenediamine Tetraacetic Acid (EDTA) Fisher BP120-500 Used to decalcify bone to prep for histology
Extended Release Buprenorphine ZooPharm Used as 3 day pain relief
Fenestrated drapes 3M 1204025 Used to establish sterile field
Handpiece cord for TPS Stryker OR-S-5100-4N Used to create 5mm defect in femur
Heating pad K&H Pet Products 121239 Rat body temperature maintenance
Hexagonal head screwdriver Wiha 263/1/16 " X 50 External fixator tightening
Induction chamber Generic Anesthesia for rats
Infuse collagen sponge with recombinant human Bone Morphogenic Protein-2 Medtronic 7510200 Clinically relevant treatment used as positive control
Isoflurane Clipper 10250 Anesthesia for rats
IVIS Perkin Elmer 124262 Bioluminescence imaging modality
Jig Custom Used to place bicortical pins
Lipofectamine MessengerMAX Fisher Scientific LMRNA003 mRNA complexing agent that enables mRNA delivery
Sensorcaine-MPF (Bupivicane (0.25%) and Epinephrine (1:200,000)) APP Pharmaceuticals, LLC NDC 63323-468-37 Applied to surgical site for pain relief and vasoconstriction
Sterile water Hospira 8904653 Used as solvent for cefazolin powder
Titanium external fixator plates Custom Prepared in house with scrap titanium and milling machine
Total Performance System (TPS) Console Stryker OR-S-5100-1 Used to create 5mm defect in femur
TPS MicroSaggital Saw Stryker OR-S-5100-34 Used to create 5mm defect in femur
Ultrafocus Faxitron with DXA Faxitron High resolution radiographic imaging modality
Uniprim rat diet Envigo TD.06596 Medicated rat diet
Universal Handswitch for TPS Stryker OR-S-5100-9 Used to create 5mm defect in femur
Vetbond Tissue Adhesive 3M 1469 Skin closure

Referências

  1. Filipowska, J., Tomaszewski, K. A., Niedźwiedzki, &. #. 3. 2. 1. ;., Walocha, J. A., Niedźwiedzki, T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis. 20 (3), 291-302 (2017).
  2. Charalambous, C. P., Akimau, P., Wilkes, R. A. Hybrid monolateral-ring fixator for bone transport in post-traumatic femoral segmental defect: A technical note. Archives of Orthopaedic and Trauma Surgery. 129 (2), 225-226 (2009).
  3. Xing, J., et al. Establishment of a bilateral femoral large segmental bone defect mouse model potentially applicable to basic research in bone tissue engineering. The Journal of Surgical Research. 192 (2), 454-463 (2014).
  4. Chadayammuri, V., Hake, M., Mauffrey, C. Innovative strategies for the management of long bone infection: A review of the Masquelet technique. Patient Safety in Surgery. 9 (32), (2015).
  5. Koettstorfer, J., Hofbauer, M., Wozasek, G. E. Successful limb salvage using the two-staged technique with internal fixation after osteodistraction in an effort to treat large segmental bone defects in the lower extremity. Archives of Orthopaedic and Trauma Surgery. 132 (19), 1399-1405 (2012).
  6. Fragomen, A. T., Rozbruch, S. R. The mechanics of external fixation. The Musculoskeletal Journal of Hospital for Special Surgery. 3 (1), 13-29 (2007).
  7. O’Toole, R. V., et al. A prospective randomized trial to assess fixation strategies for severe open tibia fractures: Modern ring external fixators versus internal fixation (FIXIT Study). Journal of Orthopaedic Trauma. 31, S10-S17 (2017).
  8. Fürmetz, J., et al. Bone transport for limb reconstruction following severe tibial fractures. Orthopedic Reviews. 8 (1), 6384 (2016).
  9. Dohin, B., Kohler, R. Masquelet’s procedure and bone morphogenetic protein in congenital pseudarthrosis of the tibia in children: A case series and meta-analysis. Journal of Children’s Orthopaedics. 6 (4), 297-306 (2012).
  10. Einhorn, T. A., Gerstenfeld, L. C. Fracture healing: Mechanisms and interventions. Nature Reviews Rheumatology. 11, 45-54 (2015).
  11. Pascher, A., et al. Gene delivery to cartilage defects using coagulated bone marrow aspirate. Gene Therapy. 11 (2), 133-141 (2004).
  12. Glatt, V., Matthys, R. Adjustable stiffness, external fixator for the rat femur osteotomy and segmental bone defect models. Journal of Visualized Experiments. (92), (2014).
  13. Betz, O. B., et al. Direct percutaneous gene delivery to enhance healing of segmental bone defects. The Journal of Bone and Joint Surgery. 88 (2), 355-365 (2006).
  14. Fang, J., et al. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proceedings of the National Academy of Sciences of the United States of America. 93 (12), 5753-5758 (1996).
  15. Kaspar, K., Schell, H., Toben, D., Matziolis, G., Bail, H. J. An easily reproducible and biomechanically standardized model to investigate bone healing in rats, using external fixation. Biomedizinische Technik. 52 (6), 383-390 (2007).
  16. Leary, S., et al. AVMA guidelines for the euthanasia of animals: 2013 edition. American Veterinary Medical Association. , (2013).
  17. McKay, W. F., Peckham, S. M., Badura, J. M. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). International Orthopaedics. 31 (6), 729-734 (2007).
  18. . . Living lmage Software. , (2006).
  19. Bassett, J. H. D., Van Der Spek, A., Gogakos, A., Williams, G. R. Quantitative X-ray imaging of rodent bone by faxitron. Methods in Molecular Biology. , 499-506 (2012).
  20. Histing, T., et al. Small animal bone healing models: Standards, tips, and pitfalls results of a consensus meeting. Bone. 49 (4), 591-599 (2011).
  21. Lieberman, J. R., et al. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. The Journal of Bone and Joint Surgery. 81 (7), 905-917 (1999).
  22. Tsuchida, H., Hashimoto, J., Crawford, E., Manske, P., Lou, J. Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats. Journal of Orthopaedic Research. 21 (1), 44-53 (2003).
  23. Jiang, H., et al. Novel standardized massive bone defect model in rats employing an internal eight-hole stainless steel plate for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine. 12 (4), 2162-2171 (2018).
  24. Baltzer, A. W., et al. Genetic enhancement of fracture repair: Healing of an experimental segmental defect by adenoviral transfer of the BMP-2 gene. Gene Therapy. 7 (9), 734-739 (2000).
  25. Li, Y., et al. Bone defect animal models for testing efficacy of bone substitute biomaterials. Journal of Orthopaedic Translation. 3 (3), 95-104 (2015).
check_url/pt/59206?article_type=t

Play Video

Citar este artigo
Kerzner, B., Martin, H. L., Weiser, M., Fontana, G., Russell, N., Murphy, W. L., Lund, E. A., Doro, C. J. A Reliable and Reproducible Critical-Sized Segmental Femoral Defect Model in Rats Stabilized with a Custom External Fixator. J. Vis. Exp. (145), e59206, doi:10.3791/59206 (2019).

View Video