Summary

免疫荧光对非小细胞肺癌患者循环肿瘤细胞的半自动PD-L1特征化及枚举

Published: August 14, 2019
doi:

Summary

循环肿瘤细胞(CTC)的表征是转化研究的一个热门话题。该协议描述了一种半自动免疫荧光(IF)测定,用于PD-L1表征和非小细胞肺癌(NSCLC)患者样本中CTC的枚举。

Abstract

从原发性肿瘤衍生的循环肿瘤细胞(CTC)被流入血液或淋巴系统。这些稀有细胞(每mL血液1~10个细胞)预后不佳,与几种癌症(如乳腺癌、前列腺癌和结肠直肠)的整体存活率较短有关。目前,抗EpCAM涂层磁珠的CTC捕获系统是美国食品和药物管理局(FDA)批准的用于在血液中列举CTC的黄金标准测试。此测试基于使用涂有抗 EpCAM 标记的磁珠,该标记专门针对上皮癌细胞。许多研究表明,EpCAM不是四氯化委员会检测的最佳标记。事实上,CTCs是癌细胞的异质亚群,能够经历与转移性增殖和入侵相关的上皮到中位转移(EMT)。这些CC能够减少细胞表面上皮标记EpCAM的表达,同时增加等分体标记,如维门他命。为了解决这一技术障碍,开发了基于CTC物理特性的其他隔离方法。微流体技术使全血样本的CTC富集方法无标签。螺旋微流体技术使用惯性和Dean阻力力,在螺旋微流体芯片内产生的曲线通道中连续流动。根据正常血细胞和肿瘤细胞的大小和可塑性的差异,分离细胞。该协议详细介绍了将螺旋微流体装置与可自定义的免疫荧光 (IF) 标记集相结合,以表征 CC 的编程死亡配体 1 (PD-L1) 表达的不同步骤。

Introduction

肿瘤抗原特异性细胞毒性T淋巴细胞(CTLs)在癌症反应中扮演着关键角色,这个过程被称为癌症”免疫监测”。免疫检查点封锁抗体(如CTLA-4抑制剂和PD-1/PD-L1抑制剂)增强了其抗肿瘤功能。在非小细胞肺癌(NSCLC)中,抗PD-1/PD-L1疗法在PD-L1阴性肿瘤患者中导致反应率在0%-17%到36%-100%。在黑色素瘤和NSCLC中观察到的对PD-1/PD-L1封锁的有力反应通过总体反应率(RR)、持久临床益处和无进展生存(PFS)的证据显示。目前,抗PD1治疗是二线NSCLC治疗的护理标准,无论PD-L1表达如何,对表达PD-L1±1的患者中,使用二线NSCLC治疗均与尼沃鲁马布和pmbrolizumab为标准。在一线治疗中,在NSCLC表达PD-L1+50%的患者中,护理标准是pmbrolizumab,并且可以通过化疗(根据组织学亚型的platin和双药)1、2来增强。

然而,这种治疗患者的方法是有争议的3,因为PD-L1在肿瘤细胞中通过免疫组织化学(IHC)表达可能不是最理想的伴生生物标志物。其他如肿瘤突变负担4(TMB),微卫星不稳定性(MSI)和/或微生物群可能在这个环境中有趣,单独或组合。NSCLC 已知是异构肿瘤,无论是在空间上(从肿瘤部位到另一个)还是从时间上(从诊断到复发)。NSCLC患者通常很脆弱,反复侵入性组织活检可能是一个问题。事实上,第一次进展的复检率从46%-84%不等,取决于系列,而成功的复检(指组织学和全分子分析)范围为33%-75%。这意味着25%-67%的患者在第一次进展5、6、7、8期间不能接受全面的再活检分析。

因此,”液体活检”的出现在这个特定环境中引起了相当大的热情,因为它通过检查从循环中衍生的循环自由DNA(cfDNA),能够对疾病进展期间的分子变化进行关键的重新评估肿瘤细胞(CTCs)。这些活细胞从肿瘤释放到血液中,在那里自由循环。虽然不经常使用,但CTC的分析在肺癌的分子和表型表征、预后和预测意义(通过DNAAq、RNAeq、miRNA和蛋白质分析)方面似乎很有希望。事实上,CTC可能含有活性疾病的型板特征,而不是最初的标记物(在诊断时在组织活检上检测到)。此外,CTCs绕过了肿瘤组织的空间异质性问题,这可能是小活检中的一个关键问题。因此,在CTC上的PD-L1表达可能会揭示其作为肿瘤组织的预测性生物标志物所产生的差异。

最近,PD-L1表达在NSCLC的TC中进行了测试。几乎所有测试的患者9是PD-L1阳性,使结果的解释及其临床使用复杂化。总体而言,在平均4.5个细胞/mL10的样本中,69.4%的样本中检测到PD-L1阳性的CTC。放射治疗开始后,PD-L1阳性CTC的比例显著增加,表明PD-L1表达对辐射11的反应上升。因此,PD-L1 CTCs 分析可用于监测肿瘤的动态变化和免疫反应,这可能反映对化疗、放疗和可能的免疫治疗 (IT) 治疗的反应。

迄今为止,CTC隔离和PD-L1表征依赖于各种方法,如抗EpCAM涂层磁珠的CTC捕获、富集基测定和基于尺寸的12、13CTC捕获测定。然而,在45%-65%的转移NSCLC患者中只检测到了CTCs,从而限制了他们为超过一半的转移性NSCLC患者提供任何信息的能力。此外,在大多数使用基于尺寸的方法10的研究中,CTC计数较低。此外,这种方法还导致在健康献血者血液中检测CD45(-)/DAPI(+)细胞具有”恶性细胞形态”的差异。这些关切突出表明,需要使用NSCLC中额外的癌症生物标志物(即TTF1、维门丁、EpCAM和CD44)从健康全血中分离非典型CD45(-)细胞进行免疫-phenotment收集,从而获得高度敏感的CTC收集方法。

因此,我们评估了一种螺旋微流体装置,该装置使用惯性和Dean阻力,通过微流体芯片根据大小和可塑性分离细胞。微流体芯片中存在的Dean涡流的形成导致沿内壁的较大CT和沿着芯片外壁的较小免疫细胞。浓缩过程通过将较大的细胞作为浓缩的CTC部分吸入收集出口完成。这种方法特别敏感和具体(检测全血约1CTC/mL)14,可与定制的免疫荧光(IF)分析相关。这些工具将启用临床解释的正阈值。因此,描述了一个工作流程,使生物学家能够分离和免疫类三氯苯甲酸碳酸盐具有高回收率和特异性。该协议描述了螺旋微流体器件收集CTC的最佳用途,根据癌症类型可定制的优化IF检测,以及使用免费的开源软件测量和分析细胞图像,以执行半自动根据荧光染色对细胞进行计数。此外,显微镜复用可以根据可用的荧光过滤器/标记的数量进行。

Protocol

在患者书面同意后,在里昂大学医院的CIRCAN(“CIRCsatCANcer”)队列框架内,对样本进行了前瞻性采集。这项研究被纳入了CIRCAN_ALL队列。该研究 CIRCAN_ALL 在参考 L15-188 下被 CPP 东南 IV 于 2015 年 4 月 4 日确认为不干预。2016年9月20日,根据参考L16-160,修订版被确认为不干预。CIRCAN_ALL 研究于 2015 年 1 月 12 日根据参考文献 15-131 向里昂市公民协会 IT 和自由通讯员宣布。当医生观察到肿瘤进展的最早迹象时,进行血液…

Representative Results

第一个先决条件是获取未受污染的(无传染性代理)的CTC集合,用于组织培养,并避免生成IF背景。净化协议能够清洁所有管道和泵,并收集了具有良好回收率的四氯苯二苯C,没有细菌污染。将富集样品与螺旋微流体装置的去污方案工作流程进行比较。为了验证去污方案,A549细胞系在没有全血的情况下使用,并直接使用螺旋微流体装置进行浓缩。如果没有优化的去污方案,仅24小时后,在富集A549细胞系的组织?…

Discussion

本研究提出了两个主要观点,第一点涉及将其转移到临床应用的工作流程的性能,第二点关于分析所获得的荧光图像的主观性降低。

在细胞富集后,通过CTC无标签微流体系统(螺旋微流体装置),使用可定制的IF测定,初步确定了CTC枚举的可执行和优化的工作流程。利用这一工作流程,一项试验性研究证实,来自转移性NSCLC患者的所有样本都含有非典型细胞,这些细胞都是CD45(-)。它们也可?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了阿斯利康(英国伦敦)、生物研究所(新加坡)和癌症联盟(法国萨奥内和卢瓦尔)的研究资助。作者感谢阿斯利康和生物科技公司的财政支持。

Materials

4',6-diamidino-2-phénylindole (DAPI) Ozyme BLE 422801 Storage conditions: +4°C
BD Facs Clean – 5L BD Biosciences 340345 Bleach-based cleaning agent. Storage conditions: Room temperature
Bleach 1% Cleaning Solution 100 mL Biolidics CBB-F016012 Bleach. Storage conditions: Room temperature
Bovine Serum Albumin (BSA) 7.5% Sigma A8412 Storage conditions: +4°C
CD45 monoclonal antibody (clone HI30) Alexa Fluor 647 BioLegend BLE304020 Storage conditions: +4°C
CellProfiler Software Broad Institute Image Analysis Software
Centrifuge device Hettich 4706 Storage conditions: Room temperature
Centrifuge tube 50 mL Corning 430-829 Storage conditions: Room temperature
Centrifuge Tube 15 mL Biolidics CBB-F001004-25 Storage conditions: Room temperature
ClearCell FX-1 System Biolidics CBB-F011002 Spiral microfluidic device. Storage conditions: Room temperature
Coulter Clenz Cleaning Agent – 5L Beckman Coulter 8448222 All-purpose cleaning reagent. Storage conditions: Room temperature
CTChip FR1S Biolidics CBB-FR001002 Microfluidic chip. Storage conditions: Room temperature
Cytospin 4 ThermoFisher A78300003 Storage conditions: Room temperature
Diluent Additive Reagent – 20 mL Biolidics CBB-F016009 Storage conditions: +4°C
EZ Cytofunnels ThermoFisher A78710003 Sample chamber with cotton. Storage conditions: Room temperature
FcR blocking Agent Miltenyi Biotec 130-059-901 Storage conditions: +4°C
Fetal Calf Serum (FCS) Gibco 10270-106 Storage conditions: +4°C
Fluoromount Sigma F4680 Mounting solution. Storage conditions: Room temperature
Fungizone – 50 mg Bristol-Myers-Squibb 90129TB29 Anti-fungal reagent. Storage conditions: +4°C
FX1 Input Straw with lock cap Biolidics CBB-F013005 Straw. Storage conditions: Room temperature
KovaSlide Dutscher 50126 Chambered slide. Storage conditions: Room temperature
PanCK monoclonal antibody (clone AE1/AE3) Alexa Fluor 488 ThermoFisher 53-9003-80 Storage conditions: +4°C
Paraformaldehyde 16% ThermoFisher 11490570 Fixation solution. Storage conditions: +4°C
PD-L1 monoclonal antibody (clone 29E2A3) – Phycoerythrin BioLegend BLE329706 Storage conditions: +4°C
Petri Dish Dutscher 632180 Storage conditions: Room temperature
Phosphate Buffered Saline (PBS) Ozyme BE17-512F Storage conditions: +4°C
Phosphate Buffered Saline Ultra Pure Grade 1X – 1L 1st Base Laboratory BUF-2040-1X1L Storage conditions: Room temperature
Pluronic F-68 10% Gibco 24040-032 Anti-binding solution. Storage conditions: Room temperature
Polylysine slides ThermoFisher J2800AMNZ Storage conditions: Room temperature
Polypropylene Conical Tube 50 mL Falcon 352098 Storage conditions: Room temperature
RBC Lysis Buffer – 100 mL G Biosciences 786-649 Storage conditions: +4°C
RBC Lysis Buffer – 250 mL G Biosciences 786-650 Storage conditions: +4°C
Resuspension Buffer (RSB) Biolidics CBB-F016003 Storage conditions: +4°C
Shandon Cytopsin4 centrifuge ThermoFisher A78300003 Dedicated centrifuge. Storage conditions: Room temperature
Silicon Isolator Grace bio-Labs 664270 Storage conditions: Room temperature
Sterile Deionized Water – 100 mL 1st Base Laboratory CUS-4100-100ml Storage conditions: Room temperature
Straight Fluorescent microscope Axio Imager D1 Zeiss Storage conditions: Room temperature
Surgical Sterile Bag SPS Laboratoires 98ULT01240 Storage conditions: Room temperature
Syringe BD Discardit II 20 mL sterile BD Biosciences 300296 Storage conditions: Room temperature
Syringe Filter 0.22 µm 33 mm sterile ClearLine 51732 Storage conditions: Room temperature
Zen lite 2.3 Lite Software Zeiss Microscope associated software

Referências

  1. Gandhi, L., et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. The New England Journal of Medicine. 378 (22), 2078-2092 (2018).
  2. Paz-Ares, L., et al. Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer. The New England Journal of Medicine. 379 (21), 2040-2051 (2018).
  3. Langer, C. J., et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. The Lancet Oncology. 17 (11), 1497-1508 (2016).
  4. Hellmann, M. D., et al. Tumor Mutational Burden and Efficacy of Nivolumab Monotherapy and in Combination with Ipilimumab in Small-Cell Lung Cancer. Cancer Cell. 33 (5), 853-861 (2018).
  5. Chouaid, C., et al. Feasibility and clinical impact of re-biopsy in advanced non small-cell lung cancer: a prospective multicenter study in a real-world setting (GFPC study 12-01). Lung cancer. 86 (2), 170-173 (2014).
  6. Nosaki, K., et al. Re-biopsy status among non-small cell lung cancer patients in Japan: A retrospective study. Lung cancer. 101, 1-8 (2016).
  7. Uozu, S., et al. Feasibility of tissue re-biopsy in non-small cell lung cancers resistant to previous epidermal growth factor receptor tyrosine kinase inhibitor therapies. BMC Pulmonary Medicine. 17 (1), 175 (2017).
  8. Kim, T. O., et al. Feasibility of re-biopsy and EGFR mutation analysis in patients with non-small cell lung cancer. Thoracic Cancer. 9 (7), 856-864 (2018).
  9. Nicolazzo, C., et al. Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients treated with the PD-1 inhibitor Nivolumab. Scientific Reports. 6, 31726 (2016).
  10. Guibert, N., et al. PD-L1 expression in circulating tumor cells of advanced non-small cell lung cancer patients treated with nivolumab. Lung cancer. 120, 108-112 (2018).
  11. Wang, Y., et al. PD-L1 Expression in Circulating Tumor Cells Increases during Radio(chemo)therapy and Indicates Poor Prognosis in Non-small Cell Lung Cancer. Scientific Reports. 9 (1), 566 (2019).
  12. Hao, S. -. J., Wan, Y., Xia, Y. -. Q., Zou, X., Zheng, S. -. Y. Size-based separation methods of circulating tumor cells. Advanced Drug Delivery Reviews. 125, 3-20 (2018).
  13. Williams, A., Balic, M., Datar, R., Cote, R. Size-based enrichment technologies for CTC detection and characterization. Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer. 195, 87-95 (2012).
  14. Garcia, J., et al. Profiling of Circulating Tumor DNA (ctDNA) in Plasma of non-small cell lung cancer (NSCLC) patients, Monitoring of EGFR p.T790M mutated allelic fraction using BEAMing Companion Assay and Evaluation in future application in mimicking Circulating Tumors Cells (mCTC). Cancer Medicine. , (2019).
  15. Garcia, J., et al. Evaluation of pre-analytical conditions and comparison of the performance of several digital PCR assays for the detection of major EGFR mutations in circulating DNA from non-small cell lung cancers: the CIRCAN_0 study. Oncotarget. 8 (50), 87980-87996 (2017).
  16. Lustberg, M. B., et al. Heterogeneous atypical cell populations are present in blood of metastatic breast cancer patients. Breast Cancer Research. 16 (2), 23 (2014).
  17. Ilie, M., et al. “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS ONE. 9 (10), 111597 (2014).
  18. Khoo, B. L., et al. Clinical validation of an ultra high-throughput spiral microfluidics for the detection and enrichment of viable circulating tumor cells. PLoS ONE. 9 (7), 99409 (2014).
  19. Heymann, J. J., et al. PD-L1 expression in non-small cell lung carcinoma: Comparison among cytology, small biopsy, and surgical resection specimens. Cancer Cytopathology. 125 (12), 896-907 (2017).
  20. Biswas, A., et al. Clinical performance of endobronchial ultrasound-guided transbronchial needle aspiration for assessing programmed death ligand-1 expression in nonsmall cell lung cancer. Diagnostic Cytopathology. 46 (5), 378-383 (2018).
  21. Buttner, R., et al. Programmed Death-Ligand 1 Immunohistochemistry Testing: A Review of Analytical Assays and Clinical Implementation in Non-Small-Cell Lung Cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 35 (34), 3867-3876 (2017).
check_url/pt/59873?article_type=t

Play Video

Citar este artigo
Garcia, J., Barthelemy, D., Geiguer, F., Ballandier, J., Li, K. W., Aurel, J., Le Breton, F., Rodriguez-Lafrasse, C., Manship, B., Couraud, S., Payen, L. Semi-automatic PD-L1 Characterization and Enumeration of Circulating Tumor Cells from Non-small Cell Lung Cancer Patients by Immunofluorescence. J. Vis. Exp. (150), e59873, doi:10.3791/59873 (2019).

View Video