Summary

用于评估非酒精性脂肪肝进展的新型 体内 微计算机断层扫描成像技术

Published: March 24, 2023
doi:

Summary

使用饮食诱导的非酒精性脂肪性肝病(NAFLD)小鼠模型,我们 描述了使用新型 体内微型计算机断层扫描成像技术作为评估NAFLD进展阶段的非侵入性方法,主要关注肝血管网络,因为它显着参与NAFLD相关的肝失调。

Abstract

非酒精性脂肪性肝病(NAFLD)是一个日益严重的全球健康问题,目前缺乏有效治疗方法加剧了NAFLD的影响。阻碍NAFLD的及时和准确诊断(包括分级)和监测以及潜在疗法开发的相当大的限制因素是目前在肝微环境结构表征和疾病分期评分方面的不足时空和非侵入性方式。使用饮食诱导的NAFLD小鼠模型,我们研究了 体内 显微计算机断层扫描(CT)成像技术作为评估NAFLD进展阶段的非侵入性方法的使用,主要集中在肝血管网络上,因为它显着参与NAFLD相关的肝脏失调。这种成像方法可以对肝脏脂肪变性和功能性组织摄取进行纵向分析,以及评估相对血容量、门静脉直径和血管网络密度。了解NAFLD进展过程中肝血管网络的适应性,并将其与使用所提出的方法表征疾病进展(脂肪变性,炎症,纤维化)的其他方法相关联,可以为建立新的,更有效的,可重复的方法铺平道路用于小鼠的NAFLD研究。该协议还有望提升临床前动物模型的价值,以研究针对疾病进展的新疗法的开发。

Introduction

非酒精性脂肪性肝病(NAFLD)是一种代谢性疾病,影响约25%的人口和>80%的病态肥胖人群1。据估计,这些人中有三分之一进展为非酒精性脂肪性肝炎(NASH),其特征是肝脂肪变性,炎症和纤维化2。NASH是一个疾病阶段,发生肝硬化和肝细胞癌(HCC)的风险明显更高3,4。因此,NASH是目前肝移植的第二大常见原因,也有望很快成为肝移植最重要的预测因子5,6,7尽管其患病率和严重程度,但没有针对NAFLD的疾病特异性疗法,现有的治疗方法仅旨在解决与疾病相关的病理,例如胰岛素抵抗和高脂血症5,6

近年来,内皮细胞以及一般代谢组织(如脂肪组织和肝脏)的血管网络的病理生理作用和适应在研究中变得越来越重要,特别是在肥胖和代谢失调期间7,8。内皮是细胞单层,在内部排列血管网络,充当功能和结构屏障。它还有助于各种生理和病理过程,例如血栓形成,代谢物运输,炎症和血管生成9,10。在肝脏的情况下,血管网络的特征之一是存在高度特化的细胞,定义为肝窦内皮细胞(LSEC)。这些细胞缺乏基底膜并且具有多个腱骨,允许底物更容易在血液和肝实质之间转移。由于其独特的解剖位置和特征,LSEC可能在肝脏的病理生理过程中起着至关重要的作用,包括在NAFLD / NASH期间肝脏炎症和纤维化的发展。事实上,LSEC在NAFLD过程中经历的病理,分子和细胞适应有助于疾病进展11。具体来说,在NAFLD期间发生的LSC依赖性肝血管生成与炎症的发展和疾病进展为NASH甚至HCC12显着相关。此外,肥胖相关的早期NAFLD的特征是LSC中胰岛素抵抗的发展,这发生在肝脏炎症或其他晚期NAFLD体征的发展之前13

此外,LSEC最近已成为几种病因的肝病期间肝血流和血管网络适应的中枢调节剂14,15。事实上,慢性肝病的特征是明显的肝内血管收缩和对血流的阻力增加,这有助于门静脉高压的发展16。就NAFLD而言,一些与LSEC有关的机制助长了这一现象。例如,如上所述,LSEC 特异性胰岛素抵抗与肝血管系统的胰岛素依赖性血管舒张减少有关13。此外,在疾病过程中,肝脏脉管系统对血管收缩剂变得更加敏感,进一步导致肝血流受损并导致剪切应激的出现,这两者都会导致正弦微循环的破坏17。这些事实表明,脉管系统是肝病的关键靶标。然而,阻碍NAFLD / NASH的及时诊断和监测以及潜在疗法开发的限制因素是肝脏微环境和(微)血管结构的一致表征以及以时空和非侵入性方式对疾病分期进行评分的不足。

显微计算机断层扫描(CT)成像是目前用于准确描述生物体内解剖信息的金标准非侵入性成像方法。显微CT和MRI代表了两种互补的成像方法,可以覆盖广泛的病理,并在成像的结构和组织中提供出色的分辨率和细节。特别是显微CT是一种非常快速和准确的工具,通常用于研究骨骼疾病和相关骨表面变化等病理学18,评估肺纤维化随时间的进展19,诊断肺癌及其分期20,甚至检查牙齿病理21,而无需对成像样本进行任何特殊准备(或破坏)。

显微CT的成像技术是基于各种器官在X射线与物质相互作用方面的不同衰减特性。在CT图像中,呈现高X射线衰减差异的器官以高对比度描绘(即,肺部看起来很暗,骨骼看起来很亮)。具有非常相似的衰减特性的器官(不同的软组织)在CT图像上难以区分22。为了解决这一限制,基于碘、金和铋的专用造影剂已被广泛用于 体内 使用。这些药剂改变它们积聚的组织的衰减特性,从循环中缓慢清除,并使整个血管系统或所选组织均匀而稳定地混浊23

在人类诊断中,CT成像和类似技术,例如MRI衍生的质子密度脂肪分数,已经用于测定肝脂肪含量24,25。在NAFLD的背景下,高软组织对比度对于准确区分病理病变或小血管至关重要。为此,使用造影剂来增强肝组织特征的对比度。这些工具和材料允许研究多种肝脏特征和可能的病理表达,例如血管网络的结构和密度,脂质沉积/脂肪变性以及肝脏中的功能性组织摄取/脂质(乳糜微粒)转移。此外,还可以评估肝脏相对血容量和门静脉直径。在非常短的扫描时间内,所有这些参数都提供了关于NAFLD评估和进展的不同和互补信息,可用于制定非侵入性和详细的诊断。

在本文中,我们提供了一种分步协议,用于使用新型 体内 显微CT成像技术作为评估NAFLD进展阶段的非侵入性方法。使用该协议,可以进行肝脂肪变性和功能性组织摄取的纵向分析,以及相对血容量,门静脉直径和血管网络密度的评估,并将其应用于肝病小鼠模型。

Protocol

所有程序均由BIOEMTECH的人员根据欧洲和国家福利法规执行,并得到国家当局的批准(许可证号EL 25 BIOexp 45 / PN 49553 21/01/20)。所有实验的设计和报告均符合ARRIVE指南26。这些小鼠是从希腊雅典的希腊巴斯德研究所购买的。 注意:将动物分组饲养在20-22°C的房间中富含轨道和纸板管的单独通风笼子中,相对湿度为50%-60%,光照/黑暗循环为12小时(光照07:00 am-07:…

Representative Results

在这项代表性研究中,不含任何造影剂的显微CT成像表明,与对照组相比,NAFLD小鼠的肝脂肪百分比更高(表2),证实了病理学。使用ExiTron造影剂和上述肝血管网络结构和密度分析,发现与健康对照相比,NAFLD小鼠肝血管网络的总体积密度更高(图6,表2)。与对照组小鼠相比,患有NAFLD的小鼠也具有更大的门静脉直径(表2),这是与肝…

Discussion

目前推荐的人类NAFLD诊断和分期方法是肝活检,它存在出血复杂性的风险,以及采样不准确40。相反,在动物模型中,这种诊断是通过尸检的组织学进行的,尽管现在可以使用可存活肝活检的方案,并且在研究设计允许时推荐41。使用验尸组织学意味着需要大量的动物来研究这种疾病的进展。因此,在疾病进展时,不能在同一只动物身上进行研究;当比较在不同时…

Declarações

The authors have nothing to disclose.

Acknowledgements

图 1 是使用 BioRender.com 创建的。这项工作得到了希腊研究与创新基金会(#3222 至 A.C.)的支持。Anna Hadjihambi由肝脏研究基金会罗杰威廉姆斯肝病学研究所资助。

Materials

eXIA160 Binitio Biomedical, Inc. https://www.binitio.com/?Page=Products
High fat diet with 60% of kilocalories from fat Research Diets, New Brunswick, NJ, USA D12492
High-fructose corn syrup  Best flavors, CA hfcs-1gallon
Lacrinorm ophthalmic ointment  Bausch & Lomb
Normal diet with 10% of kilocalories from fat  Research Diets, New Brunswick, NJ, USA D12450
Viscover ExiTron nano 12000  Milteny Biotec, Bergisch Gladbach, Germany 130-095-698
VivoQuant Invicro
X-CUBE  Molecubes, Belgium https://www.molecubes.com/systems/

Referências

  1. Lazarus, J. V., et al. Advancing the global public health agenda for NAFLD: A consensus statement. Nature Reviews. Gastroenterology & Hepatology. 19 (1), 60-78 (2022).
  2. Takahashi, Y., Fukusato, T. Histopathology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis. World Journal of Gastroenterology. 20 (42), 15539-15548 (2014).
  3. Huang, D. Q., El-Serag, H. B., Loomba, R. Global epidemiology of NAFLD-related HCC: Trends, predictions, risk factors and prevention. Nature Reviews Gastroenterology & Hepatology. 18 (4), 223-238 (2021).
  4. Niederseer, D., Wernly, B., Aigner, E., Stickel, F., Datz, C. NAFLD and cardiovascular diseases: Epidemiological, mechanistic and therapeutic considerations. Journal of Clinical Medicine. 10 (3), 467 (2021).
  5. Lefere, S., et al. Differential effects of selective- and pan-PPAR agonists on experimental steatohepatitis and hepatic macrophages. Journal of Hepatology. 73 (4), 757-770 (2020).
  6. Chrysavgis, L., Papatheodoridi, A. M., Chatzigeorgiou, A., Cholongitas, E. The impact of sodium glucose co-transporter 2 inhibitors on non-alcoholic fatty liver disease.Journal of Gastroenterology and Hepatology. Journal of Gastroenterology and Hepatology. 36 (4), 893-909 (2021).
  7. Li, M., Qian, M., Xu, J. Vascular endothelial regulation of obesity-associated insulin resistance. Frontiers in Cardiovascular Medicine. 4, 51 (2017).
  8. Pi, X., Xie, L., Patterson, C. Emerging roles of vascular endothelium in metabolic homeostasis. Circulation Research. 123 (4), 477-494 (2018).
  9. Chiu, J. J., Chien, S. Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives. Physiological Reviews. 91 (1), 327-387 (2011).
  10. Koyama, Y., Brenner, D. A. Liver inflammation and fibrosis. The Journal of Clinical Investigation. 127 (1), 55-64 (2017).
  11. Nasiri-Ansari, N., et al. Endothelial cell dysfunction and non-alcoholic fatty liver disease (NAFLD): A concise review. Cells. 11 (16), 2511 (2022).
  12. Lefere, S., et al. Angiopoietin-2 promotes pathological angiogenesis and is a therapeutic target in murine non-alcoholic fatty liver disease. Hepatology. 69 (3), 1087-1104 (2019).
  13. Pasarin, M., et al. Insulin resistance and liver microcirculation in a rat model of early NAFLD. Journal of Hepatology. 55 (5), 1095-1102 (2011).
  14. Hammoutene, A., Rautou, P. E. Role of liver sinusoidal endothelial cells in non-alcoholic fatty liver disease. Journal of Hepatology. 70 (6), 1278-1291 (2019).
  15. Sun, X., Harris, E. N. New aspects of hepatic endothelial cells in physiology and non-alcoholic fatty liver disease. American Journal of Physiology. Cell Physiology. 318 (6), C1200-C1213 (2020).
  16. Iwakiri, Y., Shah, V., Rockey, D. C. Vascular pathobiology in chronic liver disease and cirrhosis – current status and future directions. Journal of Hepatology. 61 (4), 912-924 (2014).
  17. Baffy, G. Origins of portal hypertension in non-alcoholic fatty liver disease. Digestive Diseases and Sciences. 63 (3), 563-576 (2018).
  18. Ruhli, F. J., Kuhn, G., Evison, R., Muller, R., Schultz, M. Diagnostic value of micro-CT in comparison with histology in the qualitative assessment of historical human skull bone pathologies. American Journal of Physical Anthropology. 133 (4), 1099-1111 (2007).
  19. Rodt, T., et al. Micro-computed tomography of pulmonary fibrosis in mice induced by adenoviral gene transfer of biologically active transforming growth factor-beta1. Respiratory Research. 11 (1), 181 (2010).
  20. Deng, L., Xiao, S. M., Qiang, J. W., Li, Y. A., Zhang, Y. Early lung adenocarcinoma in mice: Micro-computed tomography manifestations and correlation with pathology. Translational Oncology. 10 (3), 311-317 (2017).
  21. Feng, J., et al. Abnormalities in the enamel in bmp2-deficient mice. Cells, Tissues, Organs. 194 (2-4), 216-221 (2011).
  22. Kagadis, G. C., Loudos, G., Katsanos, K., Langer, S. G., Nikiforidis, G. C. In vivo small animal imaging: current status and future prospects. Medical Physics. 37 (12), 6421-6442 (2010).
  23. Starosolski, Z., et al. Ultra high-resolution in vivo computed tomography imaging of mouse cerebrovasculature using a long circulating blood pool contrast agent. Scientific Reports. 5, 10178 (2015).
  24. Caussy, C., Reeder, S. B., Sirlin, C. B., Noninvasive Loomba, R. quantitative assessment of liver fat by MRI-PDFF as an endpoint in NASH trials. Hepatology. 68 (2), 763-772 (2018).
  25. Lubura, M., et al. Non-invasive quantification of white and brown adipose tissues and liver fat content by computed tomography in mice. PLoS One. 7 (5), e37026 (2012).
  26. Perciedu Sert, N., et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology. 18 (7), e3000410 (2020).
  27. Tetri, L. H., Basaranoglu, M., Brunt, E. M., Yerian, L. M., Neuschwander-Tetri, B. A. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. American Journal of Physiology. Gastrointestinal and Liver Physiology. 295 (5), G987-G995 (2008).
  28. Machado, M. V., et al. Mouse models of diet-induced non-alcoholic steatohepatitis reproduce the heterogeneity of the human disease. PLoS One. 10 (5), 0127991 (2015).
  29. Jensen, T., et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. Journal of Hepatology. 68 (5), 1063-1075 (2018).
  30. Nevzorova, Y. A., Boyer-Diaz, Z., Cubero, F. J., Gracia-Sancho, J. Animal models for liver disease – A practical approach for translational research. Journal of Hepatology. 73 (2), 423-440 (2020).
  31. De Rudder, M., et al. Automated computerized image analysis for the user-independent evaluation of disease severity in preclinical models of NAFLD/NASH. Laboratory Investigation. 100 (1), 147-160 (2020).
  32. Willekens, I., et al. Time-course of contrast enhancement in spleen and liver with Exia 160, Fenestra LC, and VC. Molecular Imaging and Biology. 11 (2), 128-135 (2009).
  33. Das, N. M., et al. In vivo quantitative microcomputed tomographic analysis of vasculature and organs in a normal and diseased mouse model. PLoS One. 11 (2), e0150085 (2016).
  34. Ehling, J., et al. CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis. Gut. 63 (12), 1960-1971 (2014).
  35. Zhang, J., et al. Gamna-Gandy bodies of the spleen detected with susceptibility weighted imaging: maybe a new potential non-invasive marker of esophageal varices. PLoS One. 8 (1), e55626 (2013).
  36. Chen, Y., Li, J., Zhou, Q., Lyu, G., Li, S. Detection of liver and spleen stiffness in rats with portal hypertension by two-dimensional shear wave elastography. BMC Medical Imaging. 22 (1), 68 (2022).
  37. Lessa, A. S., et al. Ultrasound imaging in an experimental model of fatty liver disease and cirrhosis in rats. BMC Veterinary Research. 6, 6 (2010).
  38. Abikhzer, G., Alabed, Y. Z., Azoulay, L., Assayag, J., Rush, C. Altered hepatic metabolic activity in patients with hepatic steatosis on FDG PET/CT. AJR. American Journal of Roentgenology. 196 (1), 176-180 (2011).
  39. Newman, E. M., Rowland, A. A physiologically based pharmacokinetic model to predict the impact of metabolic changes associated with metabolic associated fatty liver disease on drug exposure. International Journal of Molecular Sciences. 23 (19), 11751 (2022).
  40. Tsai, E., Lee, T. P. Diagnosis and evaluation of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis, including noninvasive biomarkers and transient elastography. Clinics in Liver Disease. 22 (1), 73-92 (2018).
  41. Oldham, S., Rivera, C., Boland, M. L., Trevaskis, J. L. Incorporation of a survivable liver biopsy procedure in mice to assess non-alcoholic steatohepatitis (NASH) resolution. Journal of Visualized Experiments. 146, e59130 (2019).
  42. Boll, H., et al. Comparison of Fenestra LC, ExiTron nano 6000, and ExiTron nano 12000 for micro-CT imaging of liver and spleen in mice. Academic Radiology. 20 (9), 1137-1143 (2013).
  43. Ashton, J. R., West, J. L., Badea, C. T. In vivo small animal micro-CT using nanoparticle contrast agents. Frontiers in Pharmacology. 6, 256 (2015).
  44. Rothe, J. H., et al. Time course of contrast enhancement by micro-CT with dedicated contrast agents in normal mice and mice with hepatocellular carcinoma: Comparison of one iodinated and two nanoparticle-based agents. Academic Radiology. 22 (2), 169-178 (2015).
  45. Toczek, J., et al. Computed tomography imaging of macrophage phagocytic activity in abdominal aortic aneurysm. Theranostics. 11 (12), 5876-5888 (2021).
  46. Mannheim, J. G., et al. Comparison of small animal CT contrast agents. Contrast Media & Molecular Imaging. 11 (4), 272-284 (2016).
check_url/pt/64838?article_type=t

Play Video

Citar este artigo
Hadjihambi, A., Velliou, R., Tsialios, P., Legaki, A., Chatzigeorgiou, A., Rouchota, M. G. Novel In Vivo Micro-Computed Tomography Imaging Techniques for Assessing the Progression of Non-Alcoholic Fatty Liver Disease. J. Vis. Exp. (193), e64838, doi:10.3791/64838 (2023).

View Video